Skip to main content
Erschienen in: Acta Mechanica 7/2019

26.04.2019 | Original Paper

On the analysis of nonlinear dynamic behavior of an isolation system with irrational restoring force and fractional damping

verfasst von: Y. Y. Dong, Y. W. Han, Z. J. Zhang

Erschienen in: Acta Mechanica | Ausgabe 7/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An archetypal isolation system with rational restoring force and fractional damping is proposed and investigated based on the nonlinear mechanism of geometric kinematics. The equations of motion of this nonlinear isolator subject to nonlinear damping and external excitation are derived based on the Lagrange equation. For the free vibration system, the nonlinear irrational restoring force, nonlinear stiffness behaviors, and fractional damping are investigated to show the complex transitions of multi-stability. For the forced vibration system, the analytical expressions of force transmissibility of the nonlinear isolator with single-well potential under the perturbation of viscous damping and harmonic forcing are formulated by applying the harmonic balance method. The shock response spectra of the perturbed system subject to half-sine input are evaluated by the maximum responses. The Melnikov analysis and empirical method are employed to determine the analytical criteria of chaotic thresholds for the homoclinic orbit of the perturbed system with symmetric double-well characteristics. The numerical simulations are carried out to demonstrate periodic solutions, periodic doubling bifurcation, and chaotic solutions. The maximum displacements have been obtained to show the isolation characteristics in the case of chaotic vibration.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Lei, Z.X., Zhang, L.W., Liew, K.M.: Modeling large amplitude vibration of matrix cracked hybrid laminated plates containing CNTR-FG layers. Appl. Math. Model. 55, 33–48 (2018)MathSciNetCrossRef Lei, Z.X., Zhang, L.W., Liew, K.M.: Modeling large amplitude vibration of matrix cracked hybrid laminated plates containing CNTR-FG layers. Appl. Math. Model. 55, 33–48 (2018)MathSciNetCrossRef
2.
Zurück zum Zitat Harris, C.M., Paez, T.L.: Shock and Vibration Handbook, 6th edn. McGraw-Hill, New York (2009) Harris, C.M., Paez, T.L.: Shock and Vibration Handbook, 6th edn. McGraw-Hill, New York (2009)
3.
Zurück zum Zitat Ibrahim, R.A.: Recent advances in non-linear passive vibration isolators. J. Sound Vib. 314, 371–452 (2008)CrossRef Ibrahim, R.A.: Recent advances in non-linear passive vibration isolators. J. Sound Vib. 314, 371–452 (2008)CrossRef
4.
Zurück zum Zitat Liu, C.C., Jing, X.J., Daley, S.: Recent advances in micro-vibration isolation. Mech. Syst. Signal Process. 56, 55–80 (2015)CrossRef Liu, C.C., Jing, X.J., Daley, S.: Recent advances in micro-vibration isolation. Mech. Syst. Signal Process. 56, 55–80 (2015)CrossRef
5.
Zurück zum Zitat Fulcher, B.A., Shahan, D.W., Haberman, M.R.: Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems. J. Vib. Acoust. 136, 031009 (2014)CrossRef Fulcher, B.A., Shahan, D.W., Haberman, M.R.: Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems. J. Vib. Acoust. 136, 031009 (2014)CrossRef
6.
Zurück zum Zitat Yang, C., Yuan, X.W., Wu, J.: The research of passive vibration isolation system with broad frequency field. J. Vib. Control 19, 1348–1356 (2013)CrossRef Yang, C., Yuan, X.W., Wu, J.: The research of passive vibration isolation system with broad frequency field. J. Vib. Control 19, 1348–1356 (2013)CrossRef
7.
Zurück zum Zitat Zhang, L.W., Zhang, Y., Liew, K.M.: Modeling of nonlinear vibration of graphene sheets using a meshfree method based on nonlocal elasticity theory. Appl. Math. Model. 49, 691–704 (2017)MathSciNetCrossRef Zhang, L.W., Zhang, Y., Liew, K.M.: Modeling of nonlinear vibration of graphene sheets using a meshfree method based on nonlocal elasticity theory. Appl. Math. Model. 49, 691–704 (2017)MathSciNetCrossRef
8.
Zurück zum Zitat Xu, D.L., Yu, Q.P., Zhou, J.X.: Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 1332, 3377–3389 (2013)CrossRef Xu, D.L., Yu, Q.P., Zhou, J.X.: Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 1332, 3377–3389 (2013)CrossRef
9.
Zurück zum Zitat Zhou, N., Liu, K.A.: Tunable high-static-low-dynamic stiffness vibration isolator. J. Sound Vib. 329, 1254–1273 (2010)CrossRef Zhou, N., Liu, K.A.: Tunable high-static-low-dynamic stiffness vibration isolator. J. Sound Vib. 329, 1254–1273 (2010)CrossRef
10.
Zurück zum Zitat Zhang, W., Zhao, J.B.: Analysis on nonlinear stiffness and vibration isolation performance of scissor-like structure with full types. Nonlinear Dyn. 86, 17–36 (2016)CrossRef Zhang, W., Zhao, J.B.: Analysis on nonlinear stiffness and vibration isolation performance of scissor-like structure with full types. Nonlinear Dyn. 86, 17–36 (2016)CrossRef
11.
Zurück zum Zitat Le, T.D., Ahn, K.K.: Experimental investigation of a vibration isolation system using negative stiffness structure. Int. J. Mech. Sci. 70, 99–112 (2013)CrossRef Le, T.D., Ahn, K.K.: Experimental investigation of a vibration isolation system using negative stiffness structure. Int. J. Mech. Sci. 70, 99–112 (2013)CrossRef
12.
Zurück zum Zitat Schuster, H.G.: Reviews of Nonlinear Dynamics and Complexity. Wiley-VCH, Weinheim (2008)CrossRefMATH Schuster, H.G.: Reviews of Nonlinear Dynamics and Complexity. Wiley-VCH, Weinheim (2008)CrossRefMATH
13.
Zurück zum Zitat Ruzicka, J.E., Derby, T.F.: Influence of Damping in Vibration Isolation. The Shock Vib. Inf. Center, Washington (1971) Ruzicka, J.E., Derby, T.F.: Influence of Damping in Vibration Isolation. The Shock Vib. Inf. Center, Washington (1971)
14.
Zurück zum Zitat Yang, P., Yang, J.M., Ding, J.N.: Dynamic transmissibility of a complex nonlinear coupling isolator. Tsinghua Sci. Technol. 54, 538–542 (2006)MATH Yang, P., Yang, J.M., Ding, J.N.: Dynamic transmissibility of a complex nonlinear coupling isolator. Tsinghua Sci. Technol. 54, 538–542 (2006)MATH
15.
Zurück zum Zitat Paola, M.D., Mendola, L.L., Navarra, G.: Stochastic seismic analysis of structures with nonlinear viscous dampers. Tsinghua Sci. Technol. 133, 1475–1478 (2007) Paola, M.D., Mendola, L.L., Navarra, G.: Stochastic seismic analysis of structures with nonlinear viscous dampers. Tsinghua Sci. Technol. 133, 1475–1478 (2007)
16.
Zurück zum Zitat Lang, Z.Q., Jing, X.J., Billings, S.A., Tomlinson, G.R., Peng, Z.K.: Theoretical study of the effects of nonlinear viscous damping on vibration isolation of SDOF systems. J. Sound Vib. 323, 352–365 (2009)CrossRef Lang, Z.Q., Jing, X.J., Billings, S.A., Tomlinson, G.R., Peng, Z.K.: Theoretical study of the effects of nonlinear viscous damping on vibration isolation of SDOF systems. J. Sound Vib. 323, 352–365 (2009)CrossRef
17.
Zurück zum Zitat Guo, P.F., Lang, Z.Q., Peng, Z.K.: Analysis and design of the force and displacement transmissibility of nonlinear viscous damper based vibration isolation systems. Nonlinear Dyn. 67, 2671–2687 (2012)MathSciNetCrossRefMATH Guo, P.F., Lang, Z.Q., Peng, Z.K.: Analysis and design of the force and displacement transmissibility of nonlinear viscous damper based vibration isolation systems. Nonlinear Dyn. 67, 2671–2687 (2012)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Yan, S., Lin, B., Fei, J., Liu, P.: Nonlinear dynamic behavior of a rotor bearing system with non-linear viscous damping suspension. In: ASME International Mechanical Engineering Congress Exposition, Tampa, USA (2017) Yan, S., Lin, B., Fei, J., Liu, P.: Nonlinear dynamic behavior of a rotor bearing system with non-linear viscous damping suspension. In: ASME International Mechanical Engineering Congress Exposition, Tampa, USA (2017)
19.
Zurück zum Zitat Guo, P.F., Lang, Z.Q., Peng, Z.K.: Application of a weakly nonlinear absorber to suppress the resonant vibrations of a forced nonlinear oscillator. J. Vib. Acoust. 134, 044502 (2012)CrossRef Guo, P.F., Lang, Z.Q., Peng, Z.K.: Application of a weakly nonlinear absorber to suppress the resonant vibrations of a forced nonlinear oscillator. J. Vib. Acoust. 134, 044502 (2012)CrossRef
20.
Zurück zum Zitat Tang, B., Brennan, M.J.: A comparison of two nonlinear damping mechanisms in a vibration isolator. J. Sound Vib. 332, 510–520 (2013)CrossRef Tang, B., Brennan, M.J.: A comparison of two nonlinear damping mechanisms in a vibration isolator. J. Sound Vib. 332, 510–520 (2013)CrossRef
21.
Zurück zum Zitat Zhang, Y., Zhang, L.W., Liew, K.M., Yu, J.L.: Free vibration analysis of bilayer graphene sheets subjected to in-plane magnetic fields. Compos. Struct. 144, 86–95 (2016)CrossRef Zhang, Y., Zhang, L.W., Liew, K.M., Yu, J.L.: Free vibration analysis of bilayer graphene sheets subjected to in-plane magnetic fields. Compos. Struct. 144, 86–95 (2016)CrossRef
22.
Zurück zum Zitat Wang, Y., Wang, R.C., Meng, H.D.: Analysis and comparison of the dynamic performance of one-stage inerter-based and linear vibration isolators. Int. J. Appl. Mech. 10, 1850005 (2018)CrossRef Wang, Y., Wang, R.C., Meng, H.D.: Analysis and comparison of the dynamic performance of one-stage inerter-based and linear vibration isolators. Int. J. Appl. Mech. 10, 1850005 (2018)CrossRef
23.
Zurück zum Zitat Li, J., Li, S.: Generating ultra wide low-frequency gap for transverse wave isolation via inertial amplification effects. Phys. Lett. A 383, S0375960117311507 (2017) Li, J., Li, S.: Generating ultra wide low-frequency gap for transverse wave isolation via inertial amplification effects. Phys. Lett. A 383, S0375960117311507 (2017)
24.
Zurück zum Zitat Chen, Y., Wang, L.: Isolation of surface wave-induced vibration using periodically modulated piles. Int. J. Appl. Mech. 6, 1450042 (2014)CrossRef Chen, Y., Wang, L.: Isolation of surface wave-induced vibration using periodically modulated piles. Int. J. Appl. Mech. 6, 1450042 (2014)CrossRef
25.
Zurück zum Zitat Zhou, J.X., Wang, K., Xu, D.L., Ouyang, H.J.: Multi-low-frequency flexural wave attenuation in Euler-Bernoulli beams using local resonators containing negative-stiffness mechanisms. Phys. Lett. A 381, 3141–3148 (2017)CrossRef Zhou, J.X., Wang, K., Xu, D.L., Ouyang, H.J.: Multi-low-frequency flexural wave attenuation in Euler-Bernoulli beams using local resonators containing negative-stiffness mechanisms. Phys. Lett. A 381, 3141–3148 (2017)CrossRef
26.
Zurück zum Zitat Moon, F.C., Gollub, J.P.: Chaotic Vibrations: An Introduction for Applied Scientists and Engineers. Wiley-Interscience, Hoboken (2004)CrossRef Moon, F.C., Gollub, J.P.: Chaotic Vibrations: An Introduction for Applied Scientists and Engineers. Wiley-Interscience, Hoboken (2004)CrossRef
27.
Zurück zum Zitat Lim, C.W., Lai, S.K., Wu, B.S.: Accurate higher-order analytical approximate solutions to large-amplitude oscillating systems with a general non-rational restoring force. Nonlinear Dyn. 42, 267–281 (2005)CrossRefMATH Lim, C.W., Lai, S.K., Wu, B.S.: Accurate higher-order analytical approximate solutions to large-amplitude oscillating systems with a general non-rational restoring force. Nonlinear Dyn. 42, 267–281 (2005)CrossRefMATH
28.
Zurück zum Zitat Lim, C.W., Wu, B.S., Sun, W.P.: Higher accuracy analytical approximations to the Duffing-harmonic oscillator. J. Sound Vib. 296, 1039–1045 (2006)MathSciNetCrossRefMATH Lim, C.W., Wu, B.S., Sun, W.P.: Higher accuracy analytical approximations to the Duffing-harmonic oscillator. J. Sound Vib. 296, 1039–1045 (2006)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Lai, S.K., Lim, C.W., Wu, B.S., Wang, C., Zeng, Q.C., He, X.F.: Newton-harmonic balancing approach for accurate solutions to non-linear cubic–quantic Duffing oscillators. Appl. Math. Model. 33, 852–866 (2009)MathSciNetCrossRefMATH Lai, S.K., Lim, C.W., Wu, B.S., Wang, C., Zeng, Q.C., He, X.F.: Newton-harmonic balancing approach for accurate solutions to non-linear cubic–quantic Duffing oscillators. Appl. Math. Model. 33, 852–866 (2009)MathSciNetCrossRefMATH
Metadaten
Titel
On the analysis of nonlinear dynamic behavior of an isolation system with irrational restoring force and fractional damping
verfasst von
Y. Y. Dong
Y. W. Han
Z. J. Zhang
Publikationsdatum
26.04.2019
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 7/2019
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02425-8

Weitere Artikel der Ausgabe 7/2019

Acta Mechanica 7/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.