Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 6/2020

16-01-2020 | Research Article-Physics

The Dynamic Evolution of Cavitation Vacuolar Cloud with High-Speed Camera

Authors: Joseph Sekyi-Ansah, Yun Wang, Zhongrui Tan, Jun Zhu, Fuzhu Li

Published in: Arabian Journal for Science and Engineering | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The dynamic model of a single cavitation bubble in the submerged cavitation water jet was established and solved by MATLAB to obtain its motion characteristics and pressure pulse change rules. Numerical simulation based on FLUENT to closer wall, empty bubble breaking form then influences the law of mechanics effect, with the increase in empty bubble, and the breaking time is reduced, but the maximum jet velocity and pressure increase gradually, on the mechanism of action of the solid wall by the fact that the combination of microfluidic and shock wave gradually plays a leading role, while plastic deformation and basic cavitation erosion are avoided. The maximum pressure and maximum jet velocity increase little, and the collapse time of cavitation is reduced. By comparing the grayscale images of the two combinations of jets, it can be found that the brightness of the vacuolar clouds in diameter (d) = 1.6 mm and pressure (P) = 15 MPa is slightly less than that in d = 1.2 mm and P = 30 MPa, indicating that the density of the vacuolar clouds and the dispersion is relatively high, while the increase in nozzle diameter leads to the increase in flow rate, which increases the shear layer of high-speed submerged jet in a static water. The pressure pulse generated by cavitating water jet hollow bubble failure is far greater than the linear superposition value of a single cavitation bubble. But the high-pressure shock wave value on the fixed wall and water hammer pressure are generated by microjet. The conclusion is also corresponding to the simulation results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fujisawa, N.; Kikuchi, T.; Fujisawa, K.; Yamagata, T.: Time-resolved observations of pit formation and cloud behavior in cavitating jet. Wear 386–387, 99–105 (2017)CrossRef Fujisawa, N.; Kikuchi, T.; Fujisawa, K.; Yamagata, T.: Time-resolved observations of pit formation and cloud behavior in cavitating jet. Wear 386–387, 99–105 (2017)CrossRef
2.
go back to reference Fujisawa, N.; Fujita, Y.; Yanagisawa, K.; Fujisawa, K.; Yamagata, T.: Simultaneous observation of cavitation collapse and shock wave formation in cavitating jet. Exp. Thermal Fluid Sci. 94, 159–167 (2018)CrossRef Fujisawa, N.; Fujita, Y.; Yanagisawa, K.; Fujisawa, K.; Yamagata, T.: Simultaneous observation of cavitation collapse and shock wave formation in cavitating jet. Exp. Thermal Fluid Sci. 94, 159–167 (2018)CrossRef
3.
go back to reference Hutli, E.A.F.; Nedeljkovic, M.S.: Frequency in shedding/discharging cavitation clouds determined by visualization of a submerged cavitating jet. J. Fluids Eng. 130, 021304-021304-8 (2008)CrossRef Hutli, E.A.F.; Nedeljkovic, M.S.: Frequency in shedding/discharging cavitation clouds determined by visualization of a submerged cavitating jet. J. Fluids Eng. 130, 021304-021304-8 (2008)CrossRef
4.
go back to reference Gavaises, M.; Villa, F.; Koukouvinis, P.; Marengo, M.; Franc, J.-P.: Visualisation and les simulation of cavitation cloud formation and collapse in an axisymmetric geometry. Int. J. Multiph. Flow 68, 14–26 (2015)CrossRef Gavaises, M.; Villa, F.; Koukouvinis, P.; Marengo, M.; Franc, J.-P.: Visualisation and les simulation of cavitation cloud formation and collapse in an axisymmetric geometry. Int. J. Multiph. Flow 68, 14–26 (2015)CrossRef
5.
go back to reference Soyama, H.; Yamauchi, Y.; Adachi, Y.; Sato, K.; Shindo, T.; Oba, R.: High-speed observations of the cavitation cloud around a high-speed submerged water jet. JSME Int. J. Ser. B Fluids Therm. Eng. 38, 245–251 (1995)CrossRef Soyama, H.; Yamauchi, Y.; Adachi, Y.; Sato, K.; Shindo, T.; Oba, R.: High-speed observations of the cavitation cloud around a high-speed submerged water jet. JSME Int. J. Ser. B Fluids Therm. Eng. 38, 245–251 (1995)CrossRef
6.
go back to reference Watanabe, R.; Yanagisawa, K.; Yamagata, T.; Fujisawa, N.: Simultaneous shadowgraph imaging and acceleration pulse measurement of cavitating jet. Wear 358–359, 72–79 (2016)CrossRef Watanabe, R.; Yanagisawa, K.; Yamagata, T.; Fujisawa, N.: Simultaneous shadowgraph imaging and acceleration pulse measurement of cavitating jet. Wear 358–359, 72–79 (2016)CrossRef
7.
go back to reference Gopalan, S.; Katz, J.: Flow structure and modeling issues in the closure region of attached cavitation. Phys. Fluids 12, 895–911 (2000)CrossRef Gopalan, S.; Katz, J.: Flow structure and modeling issues in the closure region of attached cavitation. Phys. Fluids 12, 895–911 (2000)CrossRef
8.
go back to reference Ganesh, H.; Mäkiharju, S.A.; Ceccio, S.L.: Interaction of a compressible bubbly flow with an obstacle placed within a shedding partial cavity. In: Journal of Physics: Conference Series, p. 012151 (2015). Ganesh, H.; Mäkiharju, S.A.; Ceccio, S.L.: Interaction of a compressible bubbly flow with an obstacle placed within a shedding partial cavity. In: Journal of Physics: Conference Series, p. 012151 (2015).
9.
go back to reference Soyama, H.: Effect of nozzle geometry on a standard cavitation erosion test using a cavitating jet. Wear 297, 895–902 (2013)CrossRef Soyama, H.: Effect of nozzle geometry on a standard cavitation erosion test using a cavitating jet. Wear 297, 895–902 (2013)CrossRef
10.
go back to reference Hutli, E.A.F.; Nedeljkovic, M.: Frequency in shedding/discharging cavitation clouds determined by visualization of a submerged cavitating jet. J. Fluids Eng. 130, 021304 (2008)CrossRef Hutli, E.A.F.; Nedeljkovic, M.: Frequency in shedding/discharging cavitation clouds determined by visualization of a submerged cavitating jet. J. Fluids Eng. 130, 021304 (2008)CrossRef
11.
go back to reference Petkovšek, M.; Dular, M.: Simultaneous observation of cavitation structures and cavitation erosion. Wear 300, 55–64 (2013)CrossRef Petkovšek, M.; Dular, M.: Simultaneous observation of cavitation structures and cavitation erosion. Wear 300, 55–64 (2013)CrossRef
12.
go back to reference Dular, M.; Bachert, B.; Stoffel, B.; Širok, B.: Relationship between cavitation structures and cavitation damage. Wear 257, 1176–1184 (2004)CrossRef Dular, M.; Bachert, B.; Stoffel, B.; Širok, B.: Relationship between cavitation structures and cavitation damage. Wear 257, 1176–1184 (2004)CrossRef
13.
go back to reference Moffat, R.J.: Describing the uncertainties in experimental results. Exp. Thermal Fluid Sci. 1, 3–17 (1988)CrossRef Moffat, R.J.: Describing the uncertainties in experimental results. Exp. Thermal Fluid Sci. 1, 3–17 (1988)CrossRef
14.
go back to reference Yamaguchi, A.; Shimizu, S.: Erosion due to impingement of cavitating jet. J. Fluids Eng. 109, 442–447 (1987)CrossRef Yamaguchi, A.; Shimizu, S.: Erosion due to impingement of cavitating jet. J. Fluids Eng. 109, 442–447 (1987)CrossRef
15.
go back to reference Stanley, C.; Barber, T.; Rosengarten, G.: Re-entrant jet mechanism for periodic cavitation shedding in a cylindrical orifice. Int. J. Heat Fluid Flow 50, 169–176 (2014)CrossRef Stanley, C.; Barber, T.; Rosengarten, G.: Re-entrant jet mechanism for periodic cavitation shedding in a cylindrical orifice. Int. J. Heat Fluid Flow 50, 169–176 (2014)CrossRef
16.
go back to reference Watanabe, R.; Kikuchi, T.; Yamagata, T.; Fujisawa, N.: Shadowgraph imaging of cavitating jet. J. Flow Control Meas. Vis. 3, 106–110 (2015)CrossRef Watanabe, R.; Kikuchi, T.; Yamagata, T.; Fujisawa, N.: Shadowgraph imaging of cavitating jet. J. Flow Control Meas. Vis. 3, 106–110 (2015)CrossRef
17.
go back to reference Arndt, R.E.A.: Vortex cavitation. In: Green, S.I. (ed.) Fluid Vortices, pp. 731–782. Springer, Dordrecht (1995)CrossRef Arndt, R.E.A.: Vortex cavitation. In: Green, S.I. (ed.) Fluid Vortices, pp. 731–782. Springer, Dordrecht (1995)CrossRef
18.
go back to reference Wang, Y.; Ye, B.; Wang, J.; Huang, C.: Re-entry jet and shock induced cavity shedding in cloud cavitating flow around an axisymmetric projectile. In: ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. (2018). https://doi.org/10.1115/FEDSM2018-83200 Wang, Y.; Ye, B.; Wang, J.; Huang, C.: Re-entry jet and shock induced cavity shedding in cloud cavitating flow around an axisymmetric projectile. In: ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. (2018). https://​doi.​org/​10.​1115/​FEDSM2018-83200
19.
go back to reference Bai, L.; Chen, X.; Zhu, G.; Xu, W.; Lin, W.; Wu, P.; et al.: Surface tension and quasi-emulsion of cavitation bubble cloud. Ultrason. Sonochem. 35, 405–414 (2017)CrossRef Bai, L.; Chen, X.; Zhu, G.; Xu, W.; Lin, W.; Wu, P.; et al.: Surface tension and quasi-emulsion of cavitation bubble cloud. Ultrason. Sonochem. 35, 405–414 (2017)CrossRef
20.
go back to reference Nishimura, S.; Takakuwa, O.; Soyama, H.: Similarity law on shedding frequency of cavitation cloud induced by a cavitating jet. J. Fluid Sci. Technol. 7, 405–420 (2012)CrossRef Nishimura, S.; Takakuwa, O.; Soyama, H.: Similarity law on shedding frequency of cavitation cloud induced by a cavitating jet. J. Fluid Sci. Technol. 7, 405–420 (2012)CrossRef
21.
go back to reference Kozubková, M.; Rautová, J.; Bojko, M.: Mathematical model of cavitation and modelling of fluid flow in cone. Procedia Eng. 39, 9–18 (2012)CrossRef Kozubková, M.; Rautová, J.; Bojko, M.: Mathematical model of cavitation and modelling of fluid flow in cone. Procedia Eng. 39, 9–18 (2012)CrossRef
22.
go back to reference Zhang, K.; Zhu, X.; Ren, X.; Qiu, Q.; Shen, S.: Numerical investigation on the effect of nozzle position for design of high performance ejector. Appl. Thermal Eng. 126, 594–601 (2017)CrossRef Zhang, K.; Zhu, X.; Ren, X.; Qiu, Q.; Shen, S.: Numerical investigation on the effect of nozzle position for design of high performance ejector. Appl. Thermal Eng. 126, 594–601 (2017)CrossRef
23.
go back to reference Popovici, C.G.: HVAC system functionality simulation using ANSYS-Fluent. Energy Procedia 112, 360–365 (2017)CrossRef Popovici, C.G.: HVAC system functionality simulation using ANSYS-Fluent. Energy Procedia 112, 360–365 (2017)CrossRef
24.
go back to reference Marchelli, F.; Moliner, C.; Bosio, B.; Arato, E.: A CFD-DEM sensitivity analysis: the case of a pseudo-2D spouted bed. Powder Technol 353, 409–425 (2019)CrossRef Marchelli, F.; Moliner, C.; Bosio, B.; Arato, E.: A CFD-DEM sensitivity analysis: the case of a pseudo-2D spouted bed. Powder Technol 353, 409–425 (2019)CrossRef
25.
go back to reference Zhang, S.; Li, X.; Zhu, Z.: Numerical simulation of cryogenic cavitating flow by an extended transport-based cavitation model with thermal effects. Cryogenics 92, 98–104 (2018)CrossRef Zhang, S.; Li, X.; Zhu, Z.: Numerical simulation of cryogenic cavitating flow by an extended transport-based cavitation model with thermal effects. Cryogenics 92, 98–104 (2018)CrossRef
26.
go back to reference Hidalgo, V.; Luo, X.-W.; Escaler, B.Ji; Aguinaga, A.: Implicit large eddy simulation of unsteady cloud cavitation around a plane-convex hydrofoil. J. Hydrodyn. Ser. B 27, 815–823 (2015)CrossRef Hidalgo, V.; Luo, X.-W.; Escaler, B.Ji; Aguinaga, A.: Implicit large eddy simulation of unsteady cloud cavitation around a plane-convex hydrofoil. J. Hydrodyn. Ser. B 27, 815–823 (2015)CrossRef
27.
go back to reference Singhal, C.; Murtaza, Q.; Parvej, : Simulation of critical velocity of cold spray process with different turbulence models. Mater. Today Proc. 5, 17371–17379 (2018)CrossRef Singhal, C.; Murtaza, Q.; Parvej, : Simulation of critical velocity of cold spray process with different turbulence models. Mater. Today Proc. 5, 17371–17379 (2018)CrossRef
28.
go back to reference Meyer, J.P.; Everts, M.; Coetzee, N.; Grote, K.; Steyn, M.: Heat transfer coefficients of laminar, transitional, quasi-turbulent and turbulent flow in circular tubes. Int. Commun. Heat Mass Transf. 105, 84–106 (2019)CrossRef Meyer, J.P.; Everts, M.; Coetzee, N.; Grote, K.; Steyn, M.: Heat transfer coefficients of laminar, transitional, quasi-turbulent and turbulent flow in circular tubes. Int. Commun. Heat Mass Transf. 105, 84–106 (2019)CrossRef
29.
go back to reference Luo, X.-L.: A second-order pseudo-transient method for steady-state problems. Appl. Math. Comput. 216, 1752–1762 (2010)MathSciNetMATH Luo, X.-L.: A second-order pseudo-transient method for steady-state problems. Appl. Math. Comput. 216, 1752–1762 (2010)MathSciNetMATH
30.
go back to reference Shukla, S.K.; Shukla, P.; Ghosh, P.: Evaluation of numerical schemes using different simulation methods for the continuous phase modeling of cyclone separators. Adv. Powder Technol. 22, 209–219 (2011)CrossRef Shukla, S.K.; Shukla, P.; Ghosh, P.: Evaluation of numerical schemes using different simulation methods for the continuous phase modeling of cyclone separators. Adv. Powder Technol. 22, 209–219 (2011)CrossRef
31.
go back to reference Li, D.; Zha, W.; Liu, S.; Wang, L.; Lu, D.: Pressure transient analysis of low permeability reservoir with pseudo threshold pressure gradient. J. Pet. Sci. Eng. 147, 308–316 (2016)CrossRef Li, D.; Zha, W.; Liu, S.; Wang, L.; Lu, D.: Pressure transient analysis of low permeability reservoir with pseudo threshold pressure gradient. J. Pet. Sci. Eng. 147, 308–316 (2016)CrossRef
32.
go back to reference Marcon, A.; Melkote, S.N.; Castle, J.; Sanders, D.G.; Yoda, M.: Effect of jet velocity in co-flow water cavitation jet peening. Wear 360–361, 38–50 (2016)CrossRef Marcon, A.; Melkote, S.N.; Castle, J.; Sanders, D.G.; Yoda, M.: Effect of jet velocity in co-flow water cavitation jet peening. Wear 360–361, 38–50 (2016)CrossRef
33.
go back to reference Watanabe, R.; Gono, T.; Yamagata, T.; Fujisawa, N.: Three-dimensional flow structure in highly buoyant jet by scanning stereo PIV combined with POD analysis. Int. J. Heat Fluid Flow 52, 98–110 (2015)CrossRef Watanabe, R.; Gono, T.; Yamagata, T.; Fujisawa, N.: Three-dimensional flow structure in highly buoyant jet by scanning stereo PIV combined with POD analysis. Int. J. Heat Fluid Flow 52, 98–110 (2015)CrossRef
34.
go back to reference Watanabe, R.; Kikuchi, T.; Yamagata, T.; Fujisawa, N.: Shadowgraph imaging of cavitating jet. J. Flow Control Meas. Vis. 03, 106 (2015)CrossRef Watanabe, R.; Kikuchi, T.; Yamagata, T.; Fujisawa, N.: Shadowgraph imaging of cavitating jet. J. Flow Control Meas. Vis. 03, 106 (2015)CrossRef
35.
go back to reference Oudheusden, B.; Scarano, F.; Van Hinsberg, N.; Watt, D.: Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Exp. Fluids 39, 86–98 (2005)CrossRef Oudheusden, B.; Scarano, F.; Van Hinsberg, N.; Watt, D.: Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Exp. Fluids 39, 86–98 (2005)CrossRef
36.
go back to reference Arabnejad, M.H.; Amini, A.; Farhat, M.; Bensow, R.E.: Numerical and experimental investigation of shedding mechanisms from leading-edge cavitation. Int. J. Multiph. Flow 119, 123–143 (2019)MathSciNetCrossRef Arabnejad, M.H.; Amini, A.; Farhat, M.; Bensow, R.E.: Numerical and experimental investigation of shedding mechanisms from leading-edge cavitation. Int. J. Multiph. Flow 119, 123–143 (2019)MathSciNetCrossRef
37.
go back to reference Adrian, R.; Hanratty, T.J.: Large-scale modes of turbulent channel flow: transport and structure. J. Fluid Mech. 448, 53–80 (2001)CrossRef Adrian, R.; Hanratty, T.J.: Large-scale modes of turbulent channel flow: transport and structure. J. Fluid Mech. 448, 53–80 (2001)CrossRef
38.
go back to reference Lu, Y.-Y.; Liu, Y.; Li, X.-H.; Kang, Y.; Zhao, J.-X.: Numerical simulation on turbulent flow field in convergent-divergent nozzle. J. Coal Sci. Eng. (China) 15, 434 (2009)CrossRef Lu, Y.-Y.; Liu, Y.; Li, X.-H.; Kang, Y.; Zhao, J.-X.: Numerical simulation on turbulent flow field in convergent-divergent nozzle. J. Coal Sci. Eng. (China) 15, 434 (2009)CrossRef
Metadata
Title
The Dynamic Evolution of Cavitation Vacuolar Cloud with High-Speed Camera
Authors
Joseph Sekyi-Ansah
Yun Wang
Zhongrui Tan
Jun Zhu
Fuzhu Li
Publication date
16-01-2020
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 6/2020
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-019-04329-0

Other articles of this Issue 6/2020

Arabian Journal for Science and Engineering 6/2020 Go to the issue

Premium Partners