Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 1/2018

20-12-2017

The Temperature Effect on the Compressive Behavior of Closed-Cell Aluminum-Alloy Foams

Authors: Nima Movahedi, Emanoil Linul, Liviu Marsavina

Published in: Journal of Materials Engineering and Performance | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this research, the mechanical behavior of closed-cell aluminum (Al)-alloy foams was investigated at different temperatures in the range of 25-450 °C. The main mechanical properties of porous Al-alloy foams are affected by the testing temperature, and they decrease with the increase in the temperature during uniaxial compression. From both the constant/serrated character of stress–strain curves and macro/microstructural morphology of deformed cellular structure, it was found that Al foams present a transition temperature from brittle to ductile behavior around 192 °C. Due to the softening of the cellular structure at higher temperatures, linear correlations of the stress amplitude and that of the absorbed energy with the temperature were proposed. Also, it was observed that the presence of inherent defects like micropores in the foam cell walls induced further local stress concentration which weakens the cellular structure’s strength and crack propagation and cell-wall plastic deformation are the dominant collapse mechanisms. Finally, an energy absorption study was performed and an optimum temperature was proposed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties, 2nd ed., Cambridge University Press, Cambridge, 1997CrossRef L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties, 2nd ed., Cambridge University Press, Cambridge, 1997CrossRef
2.
go back to reference E. Linul, L. Marsavina, and J. Kováčik, Collapse Mechanisms of Metal Foam Matrix Composites Under Static And Dynamic Loading Conditions, Mat. Sci. Eng. A, 2017, 690, p 214–224CrossRef E. Linul, L. Marsavina, and J. Kováčik, Collapse Mechanisms of Metal Foam Matrix Composites Under Static And Dynamic Loading Conditions, Mat. Sci. Eng. A, 2017, 690, p 214–224CrossRef
3.
go back to reference X.Z. Yue, H. Fukazawa, and K. Kitazono, Strain Rate Sensitivity Of Open-Cell Titanium Foam at Elevated Temperature, Mat. Sci. Eng. A, 2016, 673, p 83–89CrossRef X.Z. Yue, H. Fukazawa, and K. Kitazono, Strain Rate Sensitivity Of Open-Cell Titanium Foam at Elevated Temperature, Mat. Sci. Eng. A, 2016, 673, p 83–89CrossRef
4.
go back to reference M.C. Saha, MdE Kabir, and S. Jeelani, Enhancement in Thermal and Mechanical Properties of Polyurethane Foam Infused with Nanoparticles, Mater. Sci. Eng. A, 2008, 479(1–2), p 213–222CrossRef M.C. Saha, MdE Kabir, and S. Jeelani, Enhancement in Thermal and Mechanical Properties of Polyurethane Foam Infused with Nanoparticles, Mater. Sci. Eng. A, 2008, 479(1–2), p 213–222CrossRef
5.
go back to reference R. Negru, L. Marsavina, T. Voiconi, E. Linul, H. Filipescu, and G. Belciu, Application of TCD for Brittle Fracture of Notched PUR Materials, Theor. Appl. Fract. Mech., 2015, 80, p 87–95CrossRef R. Negru, L. Marsavina, T. Voiconi, E. Linul, H. Filipescu, and G. Belciu, Application of TCD for Brittle Fracture of Notched PUR Materials, Theor. Appl. Fract. Mech., 2015, 80, p 87–95CrossRef
6.
go back to reference L. Marsavina, F. Berto, R. Negru, D.A. Serban, and E. Linul, An Engineering Approach to Predict Mixed Mode Fracture of PUR Foams Based on ASED and Micromechanical Modelling, Theor. Appl. Fract. Mech., 2017, 91, p 148–154CrossRef L. Marsavina, F. Berto, R. Negru, D.A. Serban, and E. Linul, An Engineering Approach to Predict Mixed Mode Fracture of PUR Foams Based on ASED and Micromechanical Modelling, Theor. Appl. Fract. Mech., 2017, 91, p 148–154CrossRef
7.
go back to reference L. Marsavina, E. Linul, T. Voiconi, D.M. Constantinescu, and D.A. Apostol, On the Crack Path Under Mixed Mode Loading on PUR Foams, Frattura ed Integrita Strutturale, 2015, 34, p 444–453 L. Marsavina, E. Linul, T. Voiconi, D.M. Constantinescu, and D.A. Apostol, On the Crack Path Under Mixed Mode Loading on PUR Foams, Frattura ed Integrita Strutturale, 2015, 34, p 444–453
8.
go back to reference E. Linul, D.A. Serban, T. Voiconi, L. Marsavina, and T. Sadowski, Energy-Absorption and Efficiency Diagrams of Rigid PUR Foams, Key Eng. Mater., 2014, 601, p 246–249CrossRef E. Linul, D.A. Serban, T. Voiconi, L. Marsavina, and T. Sadowski, Energy-Absorption and Efficiency Diagrams of Rigid PUR Foams, Key Eng. Mater., 2014, 601, p 246–249CrossRef
9.
go back to reference B. Koohbor and A. Kidane, Design Optimization of Continuously and Discretely Graded Foam Materials for Efficient Energy Absorption, Mater. Des., 2016, 102, p 151–161CrossRef B. Koohbor and A. Kidane, Design Optimization of Continuously and Discretely Graded Foam Materials for Efficient Energy Absorption, Mater. Des., 2016, 102, p 151–161CrossRef
10.
go back to reference S. Mohsenizadeh, R. Alipour, M. Shokri Rad, A. Farokhi Nejad, and Z. Ahmad, Crashworthiness Assessment of Auxetic Foam-Filled Tube Under Quasi-Static Axial, Mater. Des., 2015, 88, p 258–268CrossRef S. Mohsenizadeh, R. Alipour, M. Shokri Rad, A. Farokhi Nejad, and Z. Ahmad, Crashworthiness Assessment of Auxetic Foam-Filled Tube Under Quasi-Static Axial, Mater. Des., 2015, 88, p 258–268CrossRef
11.
go back to reference L. Marsavina, D.M. Constantinescu, E. Linul, T. Voiconi, and D.A. Apostol, Shear and Mode II, Fracture of PUR Foams, Eng. Fail. Anal., 2015, 58, p 465–476CrossRef L. Marsavina, D.M. Constantinescu, E. Linul, T. Voiconi, and D.A. Apostol, Shear and Mode II, Fracture of PUR Foams, Eng. Fail. Anal., 2015, 58, p 465–476CrossRef
12.
go back to reference L. Marsavina, D.M. Constantinescu, E. Linul, F.A. Stuparu, and D.A. Apostol, Experimental and Numerical Crack Paths in PUR Foams, Eng. Fract. Mech., 2016, 167, p 68–83CrossRef L. Marsavina, D.M. Constantinescu, E. Linul, F.A. Stuparu, and D.A. Apostol, Experimental and Numerical Crack Paths in PUR Foams, Eng. Fract. Mech., 2016, 167, p 68–83CrossRef
13.
go back to reference E. Linul and L. Marsavina, Assesment of Sandwich Beams with Rigid Polyurethane Foam Core Using Failure-Mode Maps, P. Rom. Acad. A, 2015, 16(4), p 522–530 E. Linul and L. Marsavina, Assesment of Sandwich Beams with Rigid Polyurethane Foam Core Using Failure-Mode Maps, P. Rom. Acad. A, 2015, 16(4), p 522–530
14.
go back to reference T. Voiconi, E. Linul, L. Marsavina, T. Sadowski, and M. Knec, Determination of Flexural Properties of Rigid PUR Foams Using Digital Image Correlation, Solid State Phenom., 2014, 216, p 116–121CrossRef T. Voiconi, E. Linul, L. Marsavina, T. Sadowski, and M. Knec, Determination of Flexural Properties of Rigid PUR Foams Using Digital Image Correlation, Solid State Phenom., 2014, 216, p 116–121CrossRef
17.
go back to reference M. Taherishargh, M. Vesenjak, I.V. Belova, T. Fiedler et al., In Situ Manufacturing and Mechanical Properties of Syntactic Foam Filled Tubes, Mater. Des., 2016, 99, p 356–368CrossRef M. Taherishargh, M. Vesenjak, I.V. Belova, T. Fiedler et al., In Situ Manufacturing and Mechanical Properties of Syntactic Foam Filled Tubes, Mater. Des., 2016, 99, p 356–368CrossRef
18.
go back to reference J. Lázaro, E. Solórzano, M.A. Rodríguez-Pérez, and A.R. Kennedy, Effect of Solidification Rate on Pore Connectivity of Aluminium Foams And Its Consequences on Mechanical, Mat. Sci. Eng. A, 2016, 672, p 236–246CrossRef J. Lázaro, E. Solórzano, M.A. Rodríguez-Pérez, and A.R. Kennedy, Effect of Solidification Rate on Pore Connectivity of Aluminium Foams And Its Consequences on Mechanical, Mat. Sci. Eng. A, 2016, 672, p 236–246CrossRef
19.
go back to reference Z. Liu, Z. Huang, and Q. Qin, Experimental and Theoretical Investigations on Lateral Crushing of Aluminum Foam-Filled Circular Tubes, Compos. Struct., 2017, 175, p 19–27CrossRef Z. Liu, Z. Huang, and Q. Qin, Experimental and Theoretical Investigations on Lateral Crushing of Aluminum Foam-Filled Circular Tubes, Compos. Struct., 2017, 175, p 19–27CrossRef
20.
go back to reference E.M. Castrodeza, C. Mapelli, M. Vedani et al., Processing of Shape Memory CuZnAl Open-Cell Foam by Molten Metal Infiltration, J. Mater. Eng. Perform., 2009, 18(5–6), p 484–489CrossRef E.M. Castrodeza, C. Mapelli, M. Vedani et al., Processing of Shape Memory CuZnAl Open-Cell Foam by Molten Metal Infiltration, J. Mater. Eng. Perform., 2009, 18(5–6), p 484–489CrossRef
21.
go back to reference I. Mutlu, S. Yeniyol, and E. Oktay, Production and Precipitation Hardening of Beta-Type Ti-35Nb-10Cu Alloy Foam for Implant Applications, J. Mater. Eng. Perform., 2016, 25(4), p 1586–1593CrossRef I. Mutlu, S. Yeniyol, and E. Oktay, Production and Precipitation Hardening of Beta-Type Ti-35Nb-10Cu Alloy Foam for Implant Applications, J. Mater. Eng. Perform., 2016, 25(4), p 1586–1593CrossRef
22.
go back to reference Y. An, S. Yang, E. Zhao, and Z. Wang, Characterization of Metal Grid-Structure Reinforced Aluminum Foam Under Quasi-Static Bending Loads, Compos. Struct., 2017, 178, p 288–296CrossRef Y. An, S. Yang, E. Zhao, and Z. Wang, Characterization of Metal Grid-Structure Reinforced Aluminum Foam Under Quasi-Static Bending Loads, Compos. Struct., 2017, 178, p 288–296CrossRef
23.
go back to reference J. Banhart, Manufacture, Characterisation and Application of Cellular Metals and Metal Foams, Prog. Mater. Sci., 2001, 46, p 559–632CrossRef J. Banhart, Manufacture, Characterisation and Application of Cellular Metals and Metal Foams, Prog. Mater. Sci., 2001, 46, p 559–632CrossRef
24.
go back to reference Mu Yongliang and Guangchun Yao, Effect of Fly Ash Particles on the Compressive Properties of Closed-Cell Aluminum Foams, J. Mater. Eng. Perform., 2010, 19, p 995–997CrossRef Mu Yongliang and Guangchun Yao, Effect of Fly Ash Particles on the Compressive Properties of Closed-Cell Aluminum Foams, J. Mater. Eng. Perform., 2010, 19, p 995–997CrossRef
25.
go back to reference N. Movahedi, S.M.H. Mirbagheri, and S.R. Hoseini, Effect of Foaming Temperature on the Mechanical Properties of Produced Closed-Cell A356 Aluminum Foams with Melting Method, Met. Mater. Int., 2014, 20, p 757–763CrossRef N. Movahedi, S.M.H. Mirbagheri, and S.R. Hoseini, Effect of Foaming Temperature on the Mechanical Properties of Produced Closed-Cell A356 Aluminum Foams with Melting Method, Met. Mater. Int., 2014, 20, p 757–763CrossRef
26.
go back to reference S. Fischer, Energy Absorption Efficiency of Open-Cell Pure Aluminum Foams, Mater. Lett., 2016, 184, p 208–210CrossRef S. Fischer, Energy Absorption Efficiency of Open-Cell Pure Aluminum Foams, Mater. Lett., 2016, 184, p 208–210CrossRef
27.
go back to reference N. Movahedi and A. Habibolahzadeh, Effect of Plasma Electrolytic Oxidation Treatment on Corrosion Behavior of Closed-Cell Al-A356 Alloy Foam, Mater. Lett., 2016, 164, p 558–561CrossRef N. Movahedi and A. Habibolahzadeh, Effect of Plasma Electrolytic Oxidation Treatment on Corrosion Behavior of Closed-Cell Al-A356 Alloy Foam, Mater. Lett., 2016, 164, p 558–561CrossRef
28.
go back to reference B. Katona, G. Szebényi, and I.N. Orbulov, Fatigue Properties of Ceramic Hollow Sphere Filled Aluminium Matrix Syntactic Foams, Mat. Sci. Eng. A, 2017, 679, p 350–357CrossRef B. Katona, G. Szebényi, and I.N. Orbulov, Fatigue Properties of Ceramic Hollow Sphere Filled Aluminium Matrix Syntactic Foams, Mat. Sci. Eng. A, 2017, 679, p 350–357CrossRef
29.
go back to reference C. Kádár, K. Máthis, I.N. Orbulov, and F. Chmelík, Monitoring the Failure Mechanisms in Metal Matrix Syntactic Foams During Compression by Acoustic Emission, Mater. Lett., 2016, 173, p 31–34CrossRef C. Kádár, K. Máthis, I.N. Orbulov, and F. Chmelík, Monitoring the Failure Mechanisms in Metal Matrix Syntactic Foams During Compression by Acoustic Emission, Mater. Lett., 2016, 173, p 31–34CrossRef
30.
go back to reference M. Taherishargh, I.V. Belova, G.E. Murch, and T. Fiedler, Pumice/Aluminium Syntactic Foam, Mater. Sci. Eng. A, 2015, 635, p 102–108CrossRef M. Taherishargh, I.V. Belova, G.E. Murch, and T. Fiedler, Pumice/Aluminium Syntactic Foam, Mater. Sci. Eng. A, 2015, 635, p 102–108CrossRef
31.
go back to reference D. Luong, V. Shunmugasamy, N. Gupta, D. Lehmhus et al., Quasi-Static and High Strain Rates Compressive Response of Iron and Invar Matrix Syntactic Foams, Mater. Des., 2015, 66, p 516–531CrossRef D. Luong, V. Shunmugasamy, N. Gupta, D. Lehmhus et al., Quasi-Static and High Strain Rates Compressive Response of Iron and Invar Matrix Syntactic Foams, Mater. Des., 2015, 66, p 516–531CrossRef
32.
go back to reference A. Szlancsik, B. Katona, K. Bobor, K. Májlinger, and I.N. Orbulov, Compressive Behaviour of Aluminium Matrix Syntactic Foams Reinforced by Iron Hollow Spheres, Mater. Des., 2015, 83, p 230–237CrossRef A. Szlancsik, B. Katona, K. Bobor, K. Májlinger, and I.N. Orbulov, Compressive Behaviour of Aluminium Matrix Syntactic Foams Reinforced by Iron Hollow Spheres, Mater. Des., 2015, 83, p 230–237CrossRef
33.
go back to reference Y. Alvandi-Tabrizi, D.A. Whisler, H. Kim, and A. Rabiei, High Strain Rate Behavior of Composite Metal Foams, Mat. Sci. Eng. A, 2015, 631, p 248–257CrossRef Y. Alvandi-Tabrizi, D.A. Whisler, H. Kim, and A. Rabiei, High Strain Rate Behavior of Composite Metal Foams, Mat. Sci. Eng. A, 2015, 631, p 248–257CrossRef
34.
go back to reference J. Kovácik, J. Jerz, N. Mináriková, L. Marsavina, and E. Linul, Scaling of Compression Strength in Disordered Solids: Metallic Foams, Fratturaed Integrità Strutturale, 2016, 36, p 55–62 J. Kovácik, J. Jerz, N. Mináriková, L. Marsavina, and E. Linul, Scaling of Compression Strength in Disordered Solids: Metallic Foams, Fratturaed Integrità Strutturale, 2016, 36, p 55–62
35.
go back to reference M.A. Islam, M.A. Kader, P.J. Hazell, A.D. Brown, M. Saadatfar, M.Z. Quadir, and J.P. Escobedo, Investigation of Microstructural and Mechanical Properties of Cell Walls of Closed-Cell Aluminium Alloy Foams, Mat. Sci. Eng. A, 2016, 666, p 245–256CrossRef M.A. Islam, M.A. Kader, P.J. Hazell, A.D. Brown, M. Saadatfar, M.Z. Quadir, and J.P. Escobedo, Investigation of Microstructural and Mechanical Properties of Cell Walls of Closed-Cell Aluminium Alloy Foams, Mat. Sci. Eng. A, 2016, 666, p 245–256CrossRef
36.
go back to reference Z. Zhang, J. Ding, X. Xia, X. Sun, K. Song, W. Zhaoa, and B. Liao, Fabrication and Characterization of Closed-Cell Aluminum Foams with Different Contents of Multi-walled Carbon Nanotubes, Mater. Des., 2015, 88, p 359–365CrossRef Z. Zhang, J. Ding, X. Xia, X. Sun, K. Song, W. Zhaoa, and B. Liao, Fabrication and Characterization of Closed-Cell Aluminum Foams with Different Contents of Multi-walled Carbon Nanotubes, Mater. Des., 2015, 88, p 359–365CrossRef
37.
go back to reference M.A. Kader, M.A. Islam, M. Saadatfar et al., Macro and Micro Collapse Mechanisms of Closed-Cell Aluminium Foams During Quasi-Static Compression, Mater. Des., 2017, 118, p 11–21CrossRef M.A. Kader, M.A. Islam, M. Saadatfar et al., Macro and Micro Collapse Mechanisms of Closed-Cell Aluminium Foams During Quasi-Static Compression, Mater. Des., 2017, 118, p 11–21CrossRef
38.
go back to reference F. Campana, E. Mancini, D. Pilone, and M. Sasso, Strain Rate and Density-Dependent Strength of AlSi7 Alloy Foams, Mat. Sci. Eng. A, 2016, 651, p 657–667CrossRef F. Campana, E. Mancini, D. Pilone, and M. Sasso, Strain Rate and Density-Dependent Strength of AlSi7 Alloy Foams, Mat. Sci. Eng. A, 2016, 651, p 657–667CrossRef
39.
go back to reference Y. Alvandi-Tabrizi, D.A. Whisler, H. Kim, and A. Rabiei, High Strain Rate Behavior of Composite Metal Foams, Mat. Sci. Eng. A, 2015, 631, p 248–257CrossRef Y. Alvandi-Tabrizi, D.A. Whisler, H. Kim, and A. Rabiei, High Strain Rate Behavior of Composite Metal Foams, Mat. Sci. Eng. A, 2015, 631, p 248–257CrossRef
40.
go back to reference M.Y. Omar, C. Xiang, N. Gupta et al., Syntactic Foam Core Metal Matrix Sandwich Composite: Compressive Properties and Strain Rate Effects, Mat. Sci. Eng. A, 2015, 643, p 156–168CrossRef M.Y. Omar, C. Xiang, N. Gupta et al., Syntactic Foam Core Metal Matrix Sandwich Composite: Compressive Properties and Strain Rate Effects, Mat. Sci. Eng. A, 2015, 643, p 156–168CrossRef
41.
go back to reference Y. Sun, Q.M. Li et al., Investigation of Strain-Rate Effect on the Compressive Behaviour of Closed-Cell Aluminium Foam by 3D Image-Based Modelling, Mater. Des., 2016, 89, p 215–224CrossRef Y. Sun, Q.M. Li et al., Investigation of Strain-Rate Effect on the Compressive Behaviour of Closed-Cell Aluminium Foam by 3D Image-Based Modelling, Mater. Des., 2016, 89, p 215–224CrossRef
42.
go back to reference P. Wang, S. Xu, Z. Li, J. Yang, C. Zhang, H. Zheng, and S. Hu, Experimental Investigation on the Strain-Rate Effect and Inertia Effect of Closed-Cell Aluminum Foam Subjected to Dynamic Loading, Mat. Sci. Eng. A, 2015, 620, p 253–261CrossRef P. Wang, S. Xu, Z. Li, J. Yang, C. Zhang, H. Zheng, and S. Hu, Experimental Investigation on the Strain-Rate Effect and Inertia Effect of Closed-Cell Aluminum Foam Subjected to Dynamic Loading, Mat. Sci. Eng. A, 2015, 620, p 253–261CrossRef
43.
go back to reference P. Li, N.V. Nguyen, and H. Hao, Dynamic Compressive Behaviour of Mg Foams Manufactured by the Direct Foaming Process, Mater. Des., 2016, 89, p 636–641CrossRef P. Li, N.V. Nguyen, and H. Hao, Dynamic Compressive Behaviour of Mg Foams Manufactured by the Direct Foaming Process, Mater. Des., 2016, 89, p 636–641CrossRef
44.
go back to reference T. Jin, Z. Zhou et al., Experimental Study on the Effects of Specimen in-Plane Size on the Mechanical Behavior of Aluminum Hexagonal Honeycombs, Mat. Sci. Eng. A, 2015, 635, p 23–35CrossRef T. Jin, Z. Zhou et al., Experimental Study on the Effects of Specimen in-Plane Size on the Mechanical Behavior of Aluminum Hexagonal Honeycombs, Mat. Sci. Eng. A, 2015, 635, p 23–35CrossRef
45.
go back to reference L. Marsavina, J. Kovacik, and E. Linul, Experimental Validation of Micromechanical Models for Brittle Aluminium Alloy Foam, Theor. Appl. Fract. Mech., 2016, 83, p 11–18CrossRef L. Marsavina, J. Kovacik, and E. Linul, Experimental Validation of Micromechanical Models for Brittle Aluminium Alloy Foam, Theor. Appl. Fract. Mech., 2016, 83, p 11–18CrossRef
46.
go back to reference G. Zu and G. Yao, Influence of Cell Shape Anisotropy on the Compressive Property of Closed-Cell Al-Si Alloy Foam, J. Mater. Eng. Perform., 2012, 21(6), p 985–987 G. Zu and G. Yao, Influence of Cell Shape Anisotropy on the Compressive Property of Closed-Cell Al-Si Alloy Foam, J. Mater. Eng. Perform., 2012, 21(6), p 985–987
47.
go back to reference T. Fiedler, M. Taherishargh, L. Krstulović-Opara, and M. Vesenjak, Dynamic Compressive Loading of Expanded Perlite/Aluminum Syntactic Foam, Mat. Sci. Eng. A, 2015, 626, p 296–304CrossRef T. Fiedler, M. Taherishargh, L. Krstulović-Opara, and M. Vesenjak, Dynamic Compressive Loading of Expanded Perlite/Aluminum Syntactic Foam, Mat. Sci. Eng. A, 2015, 626, p 296–304CrossRef
48.
go back to reference E. Linul, D.A. Şerban, L. Marsavina, and J. Kovacik, Low-Cycle Fatigue Behaviour of Ductile Closed-Cell Aluminium Alloy Foams, Fatig. Fract. Eng. Mater. Struct., 2017, 40(4), p 597–604CrossRef E. Linul, D.A. Şerban, L. Marsavina, and J. Kovacik, Low-Cycle Fatigue Behaviour of Ductile Closed-Cell Aluminium Alloy Foams, Fatig. Fract. Eng. Mater. Struct., 2017, 40(4), p 597–604CrossRef
49.
go back to reference L. Wang, N. Limodin, A.E. Bartali, J.F. Witz, R. Seghir, J.Y. Buffiere, and E. Charkaluk, Influence of Pores on Crack Initiation in Monotonic Tensile and Cyclic Loadings in Lost Foam Casting A319 Alloy by Using 3D In Situ Analysis, Mat. Sci. Eng. A, 2016, 673, p 362–372CrossRef L. Wang, N. Limodin, A.E. Bartali, J.F. Witz, R. Seghir, J.Y. Buffiere, and E. Charkaluk, Influence of Pores on Crack Initiation in Monotonic Tensile and Cyclic Loadings in Lost Foam Casting A319 Alloy by Using 3D In Situ Analysis, Mat. Sci. Eng. A, 2016, 673, p 362–372CrossRef
50.
go back to reference M. Taherishargh, B. Katona, T. Fiedler, and I.N. Orbulov, Fatigue Properties of Expanded Perlite/Aluminum Syntactic Foams, J. Compos. Mater., 2016, 51(6), p 773–781CrossRef M. Taherishargh, B. Katona, T. Fiedler, and I.N. Orbulov, Fatigue Properties of Expanded Perlite/Aluminum Syntactic Foams, J. Compos. Mater., 2016, 51(6), p 773–781CrossRef
51.
go back to reference J. Liu, Q. Qu, Y. Liu, R. Li, and B. Liu, Compressive Properties of Al-Si-SiC Composite Foams at Elevated Temperatures, J. Alloys. Compd., 2016, 676, p 239–244CrossRef J. Liu, Q. Qu, Y. Liu, R. Li, and B. Liu, Compressive Properties of Al-Si-SiC Composite Foams at Elevated Temperatures, J. Alloys. Compd., 2016, 676, p 239–244CrossRef
52.
go back to reference M.S. Aly, Behavior of Closed Cell Aluminium Foams Upon Compressive Testing at Elevated Temperatures: Experimental Results, Mater. Lett., 2007, 61(14–15), p 3138–3141CrossRef M.S. Aly, Behavior of Closed Cell Aluminium Foams Upon Compressive Testing at Elevated Temperatures: Experimental Results, Mater. Lett., 2007, 61(14–15), p 3138–3141CrossRef
53.
go back to reference B. Mansoor, H. Nassar, and V.C. Shunmugasamy, Three Dimensional Forming of Compressed Open-Cell Metallic Foams at Elevated Temperatures, Mat. Sci. Eng. A, 2015, 628, p 433–441CrossRef B. Mansoor, H. Nassar, and V.C. Shunmugasamy, Three Dimensional Forming of Compressed Open-Cell Metallic Foams at Elevated Temperatures, Mat. Sci. Eng. A, 2015, 628, p 433–441CrossRef
54.
go back to reference J. Kováčik, Ľ. Orovčík, and J. Jerz, High-Temperature Compression of Closed Cell Aluminium Foams, Kovove Mater., 2016, 54, p 429–441 J. Kováčik, Ľ. Orovčík, and J. Jerz, High-Temperature Compression of Closed Cell Aluminium Foams, Kovove Mater., 2016, 54, p 429–441
55.
go back to reference E. Linul, N. Movahedi, and L. Marsavina, The Temperature Effect on the Axial Quasi-Static Compressive Behavior of Ex Situ Aluminum Foam-Filled Tubes, Compos. Struct., 2017, 180, p 709–722CrossRef E. Linul, N. Movahedi, and L. Marsavina, The Temperature Effect on the Axial Quasi-Static Compressive Behavior of Ex Situ Aluminum Foam-Filled Tubes, Compos. Struct., 2017, 180, p 709–722CrossRef
56.
go back to reference N. Movahedi and E. Linul, Quasi-Static Compressive Behavior of the Ex Situ Aluminum-Alloy Foam-Filled Tubes Under Elevated Temperature Conditions, Mater. Lett., 2017, 206, p 182–184CrossRef N. Movahedi and E. Linul, Quasi-Static Compressive Behavior of the Ex Situ Aluminum-Alloy Foam-Filled Tubes Under Elevated Temperature Conditions, Mater. Lett., 2017, 206, p 182–184CrossRef
57.
go back to reference ISO 13314, Mechanical Testing of Metals—Ductility testing— Compression Test for Porous and Cellular Metals 2011. ISO 13314, Mechanical Testing of Metals—Ductility testing— Compression Test for Porous and Cellular Metals 2011.
58.
go back to reference L.J. Gibson, Mechanical Behavior of Metallic Foams, An. Rev. Mater. Sci., 2000, 30, p 191–227CrossRef L.J. Gibson, Mechanical Behavior of Metallic Foams, An. Rev. Mater. Sci., 2000, 30, p 191–227CrossRef
59.
go back to reference A. Şerban, E. Linul, T. Voiconi, L. Marsavina, and N. Modler, Numerical Evaluation of Two-Dimensional Micromechanical Structures of Anisotropic Cellular Materials: Case Study for Polyurethane Rigid Foams, Iran. Polym. J., 2015, 24, p 515–529CrossRef A. Şerban, E. Linul, T. Voiconi, L. Marsavina, and N. Modler, Numerical Evaluation of Two-Dimensional Micromechanical Structures of Anisotropic Cellular Materials: Case Study for Polyurethane Rigid Foams, Iran. Polym. J., 2015, 24, p 515–529CrossRef
60.
go back to reference I. Duarte, M. Vesenjak, and L. Krstulović-Opara, Compressive Behaviour of Unconstrained and Constrained Integral-Skin Closed-Cell Aluminium Foam, Compos. Struct., 2016, 154, p 231–238CrossRef I. Duarte, M. Vesenjak, and L. Krstulović-Opara, Compressive Behaviour of Unconstrained and Constrained Integral-Skin Closed-Cell Aluminium Foam, Compos. Struct., 2016, 154, p 231–238CrossRef
61.
go back to reference N. Movahedi and S.M.H. Mirbagheri, Comparison of the Energy Absorption of Closed-Cell Aluminum Foam Produced by Various Foaming Agents, Strength Mat., 2016, 48(3), p 444–449CrossRef N. Movahedi and S.M.H. Mirbagheri, Comparison of the Energy Absorption of Closed-Cell Aluminum Foam Produced by Various Foaming Agents, Strength Mat., 2016, 48(3), p 444–449CrossRef
62.
go back to reference K. Shojaei, S.V. Sajadifar, and G.G. Yapici, On the Mechanical Behavior of Cold Deformed Aluminum 7075 Alloy at Elevatesd Temperatures, Mater. Sci. Eng. A, 2016, 670, p 81–89CrossRef K. Shojaei, S.V. Sajadifar, and G.G. Yapici, On the Mechanical Behavior of Cold Deformed Aluminum 7075 Alloy at Elevatesd Temperatures, Mater. Sci. Eng. A, 2016, 670, p 81–89CrossRef
63.
go back to reference S. Sahu, M.D. Goel, D.P. Mondal, and S. Das, High Temperature Compressive Deformation Behavior of ZA27–SiC Foam, Mater. Sci. Eng. A, 2014, 607, p 162–172CrossRef S. Sahu, M.D. Goel, D.P. Mondal, and S. Das, High Temperature Compressive Deformation Behavior of ZA27–SiC Foam, Mater. Sci. Eng. A, 2014, 607, p 162–172CrossRef
64.
go back to reference I. Duarte, M. Vesenjak, L. Krstulovic-Opara, and Z. Ren, Static and Dynamic Axial Crush Performance of In Situ Foam-Filled Tubes, Compos. Struct., 2015, 124, p 128–139CrossRef I. Duarte, M. Vesenjak, L. Krstulovic-Opara, and Z. Ren, Static and Dynamic Axial Crush Performance of In Situ Foam-Filled Tubes, Compos. Struct., 2015, 124, p 128–139CrossRef
65.
go back to reference E. Linul, D.A. Şerban, L. Marsavina, and T. Sadowski, Assessment of Collapse Diagrams of Rigid Polyurethane Foams Under Dynamic Loading Conditions, Arch. Civ. Mech. Eng., 2017, 17(3), p 457–466CrossRef E. Linul, D.A. Şerban, L. Marsavina, and T. Sadowski, Assessment of Collapse Diagrams of Rigid Polyurethane Foams Under Dynamic Loading Conditions, Arch. Civ. Mech. Eng., 2017, 17(3), p 457–466CrossRef
Metadata
Title
The Temperature Effect on the Compressive Behavior of Closed-Cell Aluminum-Alloy Foams
Authors
Nima Movahedi
Emanoil Linul
Liviu Marsavina
Publication date
20-12-2017
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 1/2018
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-3098-4

Other articles of this Issue 1/2018

Journal of Materials Engineering and Performance 1/2018 Go to the issue

Premium Partners