Skip to main content
Top
Published in: Minds and Machines 1/2018

19-08-2017

Toward Analog Neural Computation

Author: Corey J. Maley

Published in: Minds and Machines | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Computationalism about the brain is the view that the brain literally performs computations. For the view to be interesting, we need an account of computation. The most well-developed account of computation is Turing Machine computation, the account provided by theoretical computer science which provides the basis for contemporary digital computers. Some have thought that, given the seemingly-close analogy between the all-or-nothing nature of neural spikes in brains and the binary nature of digital logic, neural computation could be a species of digital computation. A few recent authors have offered arguments against this idea; here, I review recent findings in neuroscience that further cement the implausibility of this view. However, I argue that we can retain the view that the brain is a computer if we expand what we mean by “computation” to include analog computation. I articulate an account of analog computation as the manipulation of analog representations based on previous work on the difference between analog and non-analog representations, extending a view originally articulated in Shagrir (Stud Hist Philos Sci 41(3):271–279, 2010). Given that analog computation constitutes a significant chapter in the history of computation, this revision of computationalism to include analog computation is not an ad hoc addition. Brains may well be computers, but of the analog kind, rather than the digital kind.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
That is, insofar as a Turing Machine can be said to have an architecture, given that it is an abstract mathematical object.
 
2
More precisely, computationalism can be a view about the brain or about the mind. In this essay, I focus only on computationalism about the brain.
 
3
In fact, this is how older light dimmers actually work: they send a rapid series of pulses to the light bulb, with a shorter gap between pulses for brighter light, and a longer gap for dimmer light.
 
4
Of course, virtually all modern digital computers use binary digits, so the string would actually be “101011001”.
 
Literature
go back to reference Alle, H., & Geiger, J. R. P. (2006). Combined analog and action potential coding in hippocampal mossy fibers. Science, 311, 1290–1293.CrossRef Alle, H., & Geiger, J. R. P. (2006). Combined analog and action potential coding in hippocampal mossy fibers. Science, 311, 1290–1293.CrossRef
go back to reference Bialowas, A., Rama, S., Zbili, M., Marra, V., Fronzaroli Molinieres, L., Ankri, N., et al. (2015). Analog modulation of spike-evoked transmission in CA3 circuits is determined by axonal Kv1.1 channels in a time-dependent manner. European Journal of Neuroscience, 41(3), 293–304.CrossRef Bialowas, A., Rama, S., Zbili, M., Marra, V., Fronzaroli Molinieres, L., Ankri, N., et al. (2015). Analog modulation of spike-evoked transmission in CA3 circuits is determined by axonal Kv1.1 channels in a time-dependent manner. European Journal of Neuroscience, 41(3), 293–304.CrossRef
go back to reference Brody, C., Romo, R., & Kepecs, A. (2003). Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Current Opinion in Neurobiology, 13, 204–211.CrossRef Brody, C., Romo, R., & Kepecs, A. (2003). Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Current Opinion in Neurobiology, 13, 204–211.CrossRef
go back to reference Bromley, A. G. (1990). Analog computing devices. In W. Aspray (Ed.), Computing before computers. Ames, IA: Iowa State University Press. Bromley, A. G. (1990). Analog computing devices. In W. Aspray (Ed.), Computing before computers. Ames, IA: Iowa State University Press.
go back to reference Christie, J. M., Chiu, D. N., & Jahr, C. E. (2010). Ca\(^{2+}\)-dependent enhancement of release by subthreshold somatic depolarization. Nature Neuroscience, 14(1), 62–68.CrossRef Christie, J. M., Chiu, D. N., & Jahr, C. E. (2010). Ca\(^{2+}\)-dependent enhancement of release by subthreshold somatic depolarization. Nature Neuroscience, 14(1), 62–68.CrossRef
go back to reference Dayan, P., & Abbott, L. F. (2005). Theoretical neuroscience. Cambridge, MA: MIT Press.MATH Dayan, P., & Abbott, L. F. (2005). Theoretical neuroscience. Cambridge, MA: MIT Press.MATH
go back to reference Debanne, D., Bialowas, A., & Rama, S. (2013). What are the mechanisms for analogue and digital signalling in the brain? Nature Reviews Neuroscience, 14(1), 63–69.CrossRef Debanne, D., Bialowas, A., & Rama, S. (2013). What are the mechanisms for analogue and digital signalling in the brain? Nature Reviews Neuroscience, 14(1), 63–69.CrossRef
go back to reference Egan, F. (1995). Computation and content. Philosophical Review, 104(2), 181–203.CrossRef Egan, F. (1995). Computation and content. Philosophical Review, 104(2), 181–203.CrossRef
go back to reference Egan, F. (2010). Computational models: A modest role for content. Studies in History and Philosophy of Science Part A, 41(3), 253–259.CrossRef Egan, F. (2010). Computational models: A modest role for content. Studies in History and Philosophy of Science Part A, 41(3), 253–259.CrossRef
go back to reference Fodor, J. A. (1975). The language of thought. Cambridge, MA: Harvard University Press. Fodor, J. A. (1975). The language of thought. Cambridge, MA: Harvard University Press.
go back to reference Gallistel, C. R., & King, A. P. (2009). Memory and the computational brain. Malden, MA: Wiley-Blackwell.CrossRef Gallistel, C. R., & King, A. P. (2009). Memory and the computational brain. Malden, MA: Wiley-Blackwell.CrossRef
go back to reference Gerstner, W., Kempter, R., van Hemmen, J. L., & Wagner, H. (1996). A neuronal learning rule for sub-millisecond temporal coding. Nature, 383(6595), 76–81.CrossRef Gerstner, W., Kempter, R., van Hemmen, J. L., & Wagner, H. (1996). A neuronal learning rule for sub-millisecond temporal coding. Nature, 383(6595), 76–81.CrossRef
go back to reference Gerstner, W., Kistler, W. M., Naud, R., & Paninski, L. (2014). Neuronal dynamics. Cambridge: Cambridge University Press.CrossRef Gerstner, W., Kistler, W. M., Naud, R., & Paninski, L. (2014). Neuronal dynamics. Cambridge: Cambridge University Press.CrossRef
go back to reference Hormuzdi, S. G., Filippov, M. A., Mitropoulou, G., Monyer, H., & Bruzzone, R. (2004). Electrical synapses: A dynamic signaling system that shapes the activity of neuronal networks. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1662(1–2), 113–137.CrossRef Hormuzdi, S. G., Filippov, M. A., Mitropoulou, G., Monyer, H., & Bruzzone, R. (2004). Electrical synapses: A dynamic signaling system that shapes the activity of neuronal networks. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1662(1–2), 113–137.CrossRef
go back to reference Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A., & Hudspeth, A. J. (2012). Principles of neural science (5th ed.). New York, NY: McGraw-Hill Education. Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A., & Hudspeth, A. J. (2012). Principles of neural science (5th ed.). New York, NY: McGraw-Hill Education.
go back to reference Kole, M. H. P., Letzkus, J. J., & Stuart, G. J. (2007). Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron, 55(4), 633–647.CrossRef Kole, M. H. P., Letzkus, J. J., & Stuart, G. J. (2007). Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron, 55(4), 633–647.CrossRef
go back to reference Maley, C. J. (2011). Analog and digital, continuous and discrete. Philosophical Studies, 155(1), 117–131.CrossRef Maley, C. J. (2011). Analog and digital, continuous and discrete. Philosophical Studies, 155(1), 117–131.CrossRef
go back to reference Miłkowski, M. (2013). Explaining the computational mind. Cambridge, MA: MIT Press. Miłkowski, M. (2013). Explaining the computational mind. Cambridge, MA: MIT Press.
go back to reference Mindell, D. A. (2002). Between human and machine. Baltimore, MD: Johns Hopkins University Press. Mindell, D. A. (2002). Between human and machine. Baltimore, MD: Johns Hopkins University Press.
go back to reference Piccinini, G. (2007). Computational modelling vs. computational explanation: Is everything a Turing machine, and does it matter to the philosophy of mind? Australasian Journal of Philosophy, 85(1), 93–115.MathSciNetCrossRef Piccinini, G. (2007). Computational modelling vs. computational explanation: Is everything a Turing machine, and does it matter to the philosophy of mind? Australasian Journal of Philosophy, 85(1), 93–115.MathSciNetCrossRef
go back to reference Piccinini, G., & Bahar, S. (2013). Neural computation and the computational theory of cognition. Cognitive Science, 34, 453–488.CrossRef Piccinini, G., & Bahar, S. (2013). Neural computation and the computational theory of cognition. Cognitive Science, 34, 453–488.CrossRef
go back to reference Putnam, H. (1988). Representation and reality. Cambridge, MA: MIT Press. Putnam, H. (1988). Representation and reality. Cambridge, MA: MIT Press.
go back to reference Rama, S., Zbili, M., & Debanne, D. (2015). Modulation of spike-evoked synaptic transmission: The role of presynaptic calcium and potassium channels. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1853(9), 1933–1939.CrossRef Rama, S., Zbili, M., & Debanne, D. (2015). Modulation of spike-evoked synaptic transmission: The role of presynaptic calcium and potassium channels. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1853(9), 1933–1939.CrossRef
go back to reference Robertson, J. S. (1964). Analog computation: Definition and characteristics. Annals of the New York Academy of Sciences, 115(1), 553–557.CrossRef Robertson, J. S. (1964). Analog computation: Definition and characteristics. Annals of the New York Academy of Sciences, 115(1), 553–557.CrossRef
go back to reference Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3(3), 417–424.CrossRef Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3(3), 417–424.CrossRef
go back to reference Shagrir, O. (2010). Brains as analog-model computers. Studies in History and Philosophy of Science, 41(3), 271–279.CrossRef Shagrir, O. (2010). Brains as analog-model computers. Studies in History and Philosophy of Science, 41(3), 271–279.CrossRef
go back to reference Söhl, G., Maxeiner, S., & Willecke, K. (2005). Expression and functions of neuronal gap junctions. Nature Reviews Neuroscience, 6(3), 191–200.CrossRef Söhl, G., Maxeiner, S., & Willecke, K. (2005). Expression and functions of neuronal gap junctions. Nature Reviews Neuroscience, 6(3), 191–200.CrossRef
go back to reference Sullivan, D. W., & Levy, W. B. (2003). Quantal synaptic failures improve performance in a sequence learning model of hippocampal CA3. Neurocomputing, 52–54, 397–401.CrossRef Sullivan, D. W., & Levy, W. B. (2003). Quantal synaptic failures improve performance in a sequence learning model of hippocampal CA3. Neurocomputing, 52–54, 397–401.CrossRef
Metadata
Title
Toward Analog Neural Computation
Author
Corey J. Maley
Publication date
19-08-2017
Publisher
Springer Netherlands
Published in
Minds and Machines / Issue 1/2018
Print ISSN: 0924-6495
Electronic ISSN: 1572-8641
DOI
https://doi.org/10.1007/s11023-017-9442-5

Other articles of this Issue 1/2018

Minds and Machines 1/2018 Go to the issue

Premium Partner