Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2014

01.10.2014

Compromised axonal functionality after neurodegeneration, concussion and/or traumatic brain injury

verfasst von: Pedro D. Maia, J. Nathan Kutz

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Axonal swellings are almost universal in neurodegenerative diseases of the central nervous system, including Alzheimer’s and Parkinson’s disease. Concussions and traumatic brain injuries can also produce cognitive and behavioral deficits by compromising neuronal morphology. Using a spike metric analysis, we characterize computationally the effects of such axonal varicosities on spike train propagation by comparing Poisson spike train classes before and after propagation through a prototypical axonal enlargement, or focused axonal swelling. Misclassification of spike train classes and low-pass filtering of firing rate activity increases with more pronounced axonal injury. We show that confusion matrices and a calculation of the loss of transmitted information provide a very practical way to characterize how injured neurons compromise the signal processing and faithful conductance of spike trains. The method demonstrates that (i) neural codes encoded with low firing rates are more robust to injury than those encoded with high firing rates, (ii) classification depends upon the length of the spike train used to encode information, and (iii) axonal injuries reduce the variance of spike trains within a given stimulus class. The work introduces a novel theoretical and computational framework to quantify the interplay between electrophysiological dynamics with focused axonal swellings generated by injury or other neurodegenerative processes. It further suggests how pharmacology and plasticity may play a role in recovery of neural computation. Ultimately, the work bridges vast experimental observations of in vitro morphological pathologies with post-traumatic cognitive and behavioral dysfunction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Fainaru-Wada, M., & Fainaru, S. (2013). League of denial: The NFL, concussions, and the battle for truth. Crown Archetype. Fainaru-Wada, M., & Fainaru, S. (2013). League of denial: The NFL, concussions, and the battle for truth. Crown Archetype.
Zurück zum Zitat Faul, M., Xu, L., Wald, M.M., Coronado, V.G. (2010). Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. Atlanta (GA): centers for disease control and prevention, national center for injury prevention and control. Faul, M., Xu, L., Wald, M.M., Coronado, V.G. (2010). Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. Atlanta (GA): centers for disease control and prevention, national center for injury prevention and control.
Zurück zum Zitat Adle-Biassette, H., Chretien, F., Wingertsmann, L., Hery, C., Ereau T., Scaravilli, F., Tardieu, M., Gray, F. (1999). Neuropathology and Applied Neurobiology, 25, 123–133.PubMedCrossRef Adle-Biassette, H., Chretien, F., Wingertsmann, L., Hery, C., Ereau T., Scaravilli, F., Tardieu, M., Gray, F. (1999). Neuropathology and Applied Neurobiology, 25, 123–133.PubMedCrossRef
Zurück zum Zitat Altenberger, R., Lindsay, K.A., Ogden, J.M., Rosenberg, J.R. (2001). The interaction between membrane kinetics and membrane geometry in the transmission of action potentials in non-uniform excitable fibres: a finite element approach. Journal of Neuroscience Methods, 112, 101–117.PubMedCrossRef Altenberger, R., Lindsay, K.A., Ogden, J.M., Rosenberg, J.R. (2001). The interaction between membrane kinetics and membrane geometry in the transmission of action potentials in non-uniform excitable fibres: a finite element approach. Journal of Neuroscience Methods, 112, 101–117.PubMedCrossRef
Zurück zum Zitat Antic, S., Wuskell, J.P., Loew, L., Zecevic, D. (2000). Functional profile of the giant metacerebral neuron of Helix aspersa: temporal and spatial dynamics of electrical activity in situ. The Journal of Physiology, 527, 55–69.PubMedCentralPubMedCrossRef Antic, S., Wuskell, J.P., Loew, L., Zecevic, D. (2000). Functional profile of the giant metacerebral neuron of Helix aspersa: temporal and spatial dynamics of electrical activity in situ. The Journal of Physiology, 527, 55–69.PubMedCentralPubMedCrossRef
Zurück zum Zitat Aronov, D., & Victor, J.D. (2005). Non-euclidean properties of spike train metric spaces. Physical Reviews E - Statistics Nonlin Soft Matter Physical, 69, 061905.CrossRef Aronov, D., & Victor, J.D. (2005). Non-euclidean properties of spike train metric spaces. Physical Reviews E - Statistics Nonlin Soft Matter Physical, 69, 061905.CrossRef
Zurück zum Zitat Bakkum, D.J., Frey, U., Radivojevic, M., Russel, T.L., Müller. J., Fiscella, M., Takahashi, H., Hierlemann, A. (2013). Nature communications, 4, 2181.PubMedCrossRef Bakkum, D.J., Frey, U., Radivojevic, M., Russel, T.L., Müller. J., Fiscella, M., Takahashi, H., Hierlemann, A. (2013). Nature communications, 4, 2181.PubMedCrossRef
Zurück zum Zitat Blumbergs, P.C., Scott, G., Manavis, J., Wainwright, H., Simpson, D.A., McLean, A.J (1995). Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. Journal of Neurotrauma, 12, 565–572.PubMedCrossRef Blumbergs, P.C., Scott, G., Manavis, J., Wainwright, H., Simpson, D.A., McLean, A.J (1995). Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. Journal of Neurotrauma, 12, 565–572.PubMedCrossRef
Zurück zum Zitat Browne, K.D., Chen, X.H., Meaney, D.F., Smith, D.H. (2011). Mild traumatic brain injury and diffuse axonal injury, in Swine. Journal of Neurotrauma, 28(9), 1747–1755.PubMedCentralPubMedCrossRef Browne, K.D., Chen, X.H., Meaney, D.F., Smith, D.H. (2011). Mild traumatic brain injury and diffuse axonal injury, in Swine. Journal of Neurotrauma, 28(9), 1747–1755.PubMedCentralPubMedCrossRef
Zurück zum Zitat Bucher, D., & Goaillard, J.M. (2011). Beyond faithful conduction: Short term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon. Progress in Neurobiology, 94, 307–346.PubMedCentralPubMedCrossRef Bucher, D., & Goaillard, J.M. (2011). Beyond faithful conduction: Short term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon. Progress in Neurobiology, 94, 307–346.PubMedCentralPubMedCrossRef
Zurück zum Zitat Chen, W.R., Shen, G.Y., Shepherd, G.M., Hines, M.L., Midtgaard, J. (2002). Multiple modes of action potential initiation and propagation in mitral cell primary dendrite. Journal of Neurophysiology, 88, 27552764.CrossRef Chen, W.R., Shen, G.Y., Shepherd, G.M., Hines, M.L., Midtgaard, J. (2002). Multiple modes of action potential initiation and propagation in mitral cell primary dendrite. Journal of Neurophysiology, 88, 27552764.CrossRef
Zurück zum Zitat Chen, Y.C., Smith, D.H., Meaney, D.F. (2009). In-Vitro approaches for studying blast-induced traumatic brain injury. Journal of Neurotrauma, 26(6), 861–876.PubMedCentralPubMedCrossRef Chen, Y.C., Smith, D.H., Meaney, D.F. (2009). In-Vitro approaches for studying blast-induced traumatic brain injury. Journal of Neurotrauma, 26(6), 861–876.PubMedCentralPubMedCrossRef
Zurück zum Zitat Christman, C.W., Grady, M.S., Walker, S.A., Hol-Loway, K.L., Povlishock, J.T. (1994). Ultra-structural studies of diffuse axonal injury in humans. Journal of Neurotrauma, 11, 173–186.PubMedCrossRef Christman, C.W., Grady, M.S., Walker, S.A., Hol-Loway, K.L., Povlishock, J.T. (1994). Ultra-structural studies of diffuse axonal injury in humans. Journal of Neurotrauma, 11, 173–186.PubMedCrossRef
Zurück zum Zitat Cheng, C.L., & Povlishock, J.T. (1988). The effect of traumatic brain injury on the visual system: a morphologic characterization of reactive axonal change. Journal of Neurotrauma, 5, 47–60.PubMedCrossRef Cheng, C.L., & Povlishock, J.T. (1988). The effect of traumatic brain injury on the visual system: a morphologic characterization of reactive axonal change. Journal of Neurotrauma, 5, 47–60.PubMedCrossRef
Zurück zum Zitat Dayan, P., & Abbot, F.L. (2001). Theoretical Neuroscience. MIT Press. Dayan, P., & Abbot, F.L. (2001). Theoretical Neuroscience. MIT Press.
Zurück zum Zitat Coleman, M. (2005). Axon degeneration mechanisms: commonality amid diversity. Nature Reviews Neuroscience, 6(11), 889–898.PubMedCrossRef Coleman, M. (2005). Axon degeneration mechanisms: commonality amid diversity. Nature Reviews Neuroscience, 6(11), 889–898.PubMedCrossRef
Zurück zum Zitat Debanne, D. (2004). Information processing in the axon. Nature Reviews Neuroscience, 5(4), 304–316.PubMedCrossRef Debanne, D. (2004). Information processing in the axon. Nature Reviews Neuroscience, 5(4), 304–316.PubMedCrossRef
Zurück zum Zitat Debanne, D., Campanac, E., Bialowas, A. (2011). Axon Physiology. Physiological Reviews, 91, 555–602.PubMedCrossRef Debanne, D., Campanac, E., Bialowas, A. (2011). Axon Physiology. Physiological Reviews, 91, 555–602.PubMedCrossRef
Zurück zum Zitat Ermentrout, G.B., & Rinzel, J. (1996). Reflected waves in an inhomogeneous excitable medium. SIAM Journal on Applied Mathematics, 56(4), 1107–1128.CrossRef Ermentrout, G.B., & Rinzel, J. (1996). Reflected waves in an inhomogeneous excitable medium. SIAM Journal on Applied Mathematics, 56(4), 1107–1128.CrossRef
Zurück zum Zitat Ermentrout, G.B. (2010). Mathematical foundations of neuroscience: Springer. Ermentrout, G.B. (2010). Mathematical foundations of neuroscience: Springer.
Zurück zum Zitat Ferguson, B., Matyszak, M.K., Esiri, M.M., Perry, V.H. (1997). Axonal damage in acute multiple sclerosis lesions. Brain, 120, 393–399.PubMedCrossRef Ferguson, B., Matyszak, M.K., Esiri, M.M., Perry, V.H. (1997). Axonal damage in acute multiple sclerosis lesions. Brain, 120, 393–399.PubMedCrossRef
Zurück zum Zitat Galvin, J.E., Uryu, K., Lee, V.M., Trojanowski, J.Q. (1999). Axon pathology in parkinsons disease and lewy body dementia hippocampus contains α-, β-, and γ -synuclein. Proceedings of National Academy of Science (USA), 96, 13450–13455.CrossRef Galvin, J.E., Uryu, K., Lee, V.M., Trojanowski, J.Q. (1999). Axon pathology in parkinsons disease and lewy body dementia hippocampus contains α-, β-, and γ -synuclein. Proceedings of National Academy of Science (USA), 96, 13450–13455.CrossRef
Zurück zum Zitat Gerstner, W. (2002). Spiking neuron models. Cambridge University Press. Gerstner, W. (2002). Spiking neuron models. Cambridge University Press.
Zurück zum Zitat Goldstein, S.S., & Rall, W. (1974). Changes of action potential shape and velocity for changing core conductor geometry. Biophysical Journal, 14, 731–757.PubMedCentralPubMedCrossRef Goldstein, S.S., & Rall, W. (1974). Changes of action potential shape and velocity for changing core conductor geometry. Biophysical Journal, 14, 731–757.PubMedCentralPubMedCrossRef
Zurück zum Zitat Grady, M.S., Mclaughlin, M.R., Christman, C.W., Valadaka, A.B., Flinger, C.L., Povlishock, J.T. (1993). The use of antibodies against neurofilament sub- units for the detection of diffuse axonal injury in humans. Journal of Neuropathology Experimentalis Neurologica, 52, 143–152.CrossRef Grady, M.S., Mclaughlin, M.R., Christman, C.W., Valadaka, A.B., Flinger, C.L., Povlishock, J.T. (1993). The use of antibodies against neurofilament sub- units for the detection of diffuse axonal injury in humans. Journal of Neuropathology Experimentalis Neurologica, 52, 143–152.CrossRef
Zurück zum Zitat Hemphill, M.A., Dabiri, B.E., Gabriele, S., Kerscher, L., Franck, C., Goss, J.A., Alford, P.W., Parker, K.K. (2011). A possible role for integrin signaling in diffuse axonal injury. PLos ONE, 6(7), 22899.CrossRef Hemphill, M.A., Dabiri, B.E., Gabriele, S., Kerscher, L., Franck, C., Goss, J.A., Alford, P.W., Parker, K.K. (2011). A possible role for integrin signaling in diffuse axonal injury. PLos ONE, 6(7), 22899.CrossRef
Zurück zum Zitat Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500–545.PubMedCentralPubMed Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500–545.PubMedCentralPubMed
Zurück zum Zitat Izhikevich, E.M. (2007). Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press. Izhikevich, E.M. (2007). Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press.
Zurück zum Zitat Jorge, R.E., Acion, L., White, T., Tordesillas-Gutierrez, D., Pierson, R., Crespo-Facorro, B., Magnotta, V.A. (2012). White matter abnormalities in veterans with mild traumatic brain injury. American Journal of Psychiatry, 169(12), 1284–1291.PubMedCentralPubMedCrossRef Jorge, R.E., Acion, L., White, T., Tordesillas-Gutierrez, D., Pierson, R., Crespo-Facorro, B., Magnotta, V.A. (2012). White matter abnormalities in veterans with mild traumatic brain injury. American Journal of Psychiatry, 169(12), 1284–1291.PubMedCentralPubMedCrossRef
Zurück zum Zitat Krstic, D., & Knusesl, I. (2012). Deciphering the mechanism underlying late-onset alzheimer disease. Nature Reviews Neuroscience, 9(1), 25–34. Krstic, D., & Knusesl, I. (2012). Deciphering the mechanism underlying late-onset alzheimer disease. Nature Reviews Neuroscience, 9(1), 25–34.
Zurück zum Zitat Khodorov, B.I., & Timin, E.N. (1975). Nerve impulse propagation along nonuniform fibres. Progress in Biophysics and Molecular Biology, 30(23), 145–184.PubMed Khodorov, B.I., & Timin, E.N. (1975). Nerve impulse propagation along nonuniform fibres. Progress in Biophysics and Molecular Biology, 30(23), 145–184.PubMed
Zurück zum Zitat Kutz, J.N. (2013). Data-driven modeling and scientific computing: Oxford Press. Kutz, J.N. (2013). Data-driven modeling and scientific computing: Oxford Press.
Zurück zum Zitat Liberski, P.P., & Budka, H. (1999). Neuroaxonal pathology in Creutzfeldt-Jakob disease. Acta Neuropathology (Berlim), 97, 329–334.CrossRef Liberski, P.P., & Budka, H. (1999). Neuroaxonal pathology in Creutzfeldt-Jakob disease. Acta Neuropathology (Berlim), 97, 329–334.CrossRef
Zurück zum Zitat Lipton, M.L., Gellella, E., Lo, C., Gold, T., Ardekani, B.A., Shifteh, K., Bello, J.A., Branch, C.A. (2008). Journal of Neurotrauma, 25, 13351342.PubMedCrossRef Lipton, M.L., Gellella, E., Lo, C., Gold, T., Ardekani, B.A., Shifteh, K., Bello, J.A., Branch, C.A. (2008). Journal of Neurotrauma, 25, 13351342.PubMedCrossRef
Zurück zum Zitat Magdesian, M.H., Sanchez, F.S., Lopez, M., Thostrup, P., Durisic, N., Belkaid, W., Liazoghli, D., Grütter, P., Colman, R. (2012). Atomic force microscopy reveals important differences in axonal resistance to injury. Biophysical Journal, 103(3), 405–414.PubMedCentralPubMedCrossRef Magdesian, M.H., Sanchez, F.S., Lopez, M., Thostrup, P., Durisic, N., Belkaid, W., Liazoghli, D., Grütter, P., Colman, R. (2012). Atomic force microscopy reveals important differences in axonal resistance to injury. Biophysical Journal, 103(3), 405–414.PubMedCentralPubMedCrossRef
Zurück zum Zitat Maia, P.D., & Kutz, J.N. (2014). Identifying critical regions for spike propagation in axon segments. Journal of Computational Neuroscience, 36(2), 55–141.CrossRef Maia, P.D., & Kutz, J.N. (2014). Identifying critical regions for spike propagation in axon segments. Journal of Computational Neuroscience, 36(2), 55–141.CrossRef
Zurück zum Zitat Manor, Y., Koch, C., Segev, I. (1991). Effect of geometrical irregularities on propagation delay in axonal trees. Biophysical Journal, 60, 1424–1437.PubMedCentralPubMedCrossRef Manor, Y., Koch, C., Segev, I. (1991). Effect of geometrical irregularities on propagation delay in axonal trees. Biophysical Journal, 60, 1424–1437.PubMedCentralPubMedCrossRef
Zurück zum Zitat Maxwell, W.L., Povlishock, J.T., Graham, D.L. (1997). A mechanistic analysis of nondisruptive axonal injury:A review. Journal of Neurotrauma, 17(7), 419–440.CrossRef Maxwell, W.L., Povlishock, J.T., Graham, D.L. (1997). A mechanistic analysis of nondisruptive axonal injury:A review. Journal of Neurotrauma, 17(7), 419–440.CrossRef
Zurück zum Zitat Millecamps, S., & Julien, J.P. (2013). Axonal transport deficits and neurodegenerative diseases. Nature Reviews Neuroscience, 14(161), 161–176.PubMedCrossRef Millecamps, S., & Julien, J.P. (2013). Axonal transport deficits and neurodegenerative diseases. Nature Reviews Neuroscience, 14(161), 161–176.PubMedCrossRef
Zurück zum Zitat Nagumo, S., Arimoto, Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 50(10), 2061–2070.CrossRef Nagumo, S., Arimoto, Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 50(10), 2061–2070.CrossRef
Zurück zum Zitat Niogi, S.N., Mukherjee, P., Ghajar, J., Johnson, C., Kolster, R.A., Sarkar, R., Lee, H., Meeker, M., Zimmerman, R.D., Manley, G.T., Mccandliss, B.D. (2008). Extent of Microstructural White Matter Injury in Postconcussive Syndrome Correlates with Impaired Cognitive Reaction Time: A 3T Diffusion Tensor Imaging Study of Mild Traumatic Brain Injury. American Journal of Neuroradiology, 29(5), 967–973.PubMedCrossRef Niogi, S.N., Mukherjee, P., Ghajar, J., Johnson, C., Kolster, R.A., Sarkar, R., Lee, H., Meeker, M., Zimmerman, R.D., Manley, G.T., Mccandliss, B.D. (2008). Extent of Microstructural White Matter Injury in Postconcussive Syndrome Correlates with Impaired Cognitive Reaction Time: A 3T Diffusion Tensor Imaging Study of Mild Traumatic Brain Injury. American Journal of Neuroradiology, 29(5), 967–973.PubMedCrossRef
Zurück zum Zitat Parnas, I. (1972). Differential block at high frequency of branches of a single axon innervating two muscles. Journal of Neurophysiology, 35, 903–914.PubMed Parnas, I. (1972). Differential block at high frequency of branches of a single axon innervating two muscles. Journal of Neurophysiology, 35, 903–914.PubMed
Zurück zum Zitat Parnas, I., Hochstein, S., Parnas, H. (1976). Theoretical analysis of parameters leading to frequency modulation along an inhomogeneous axon. Journal of Neurophysiology, 39(4). Parnas, I., Hochstein, S., Parnas, H. (1976). Theoretical analysis of parameters leading to frequency modulation along an inhomogeneous axon. Journal of Neurophysiology, 39(4).
Zurück zum Zitat Parnas, I. (1979). Propagation in nonuniform neurites: form and function in axons. The neurosciences, edited by Schmitt, F.O. Worden F.G.Cambridge, MIT Press, 499–512. Parnas, I. (1979). Propagation in nonuniform neurites: form and function in axons. The neurosciences, edited by Schmitt, F.O. Worden F.G.Cambridge, MIT Press, 499–512.
Zurück zum Zitat Ramon, F., Joyner, R.W, Moore, J.W. (1975). Propagation of action potentials in inhomogeneous axon regions. Federation proceedings, 34, 1357–1363.PubMed Ramon, F., Joyner, R.W, Moore, J.W. (1975). Propagation of action potentials in inhomogeneous axon regions. Federation proceedings, 34, 1357–1363.PubMed
Zurück zum Zitat Rinzel, J. (1990). Mechanisms for nonuniform propagation along excitable cables. Annals of the New York Academy of Sciences, 591. Rinzel, J. (1990). Mechanisms for nonuniform propagation along excitable cables. Annals of the New York Academy of Sciences, 591.
Zurück zum Zitat Rubovitch, V., Ten-Bosch, M., Zohar, O., Harrison, C.R., Tempel-Brami, C., Stein, E., Hoffer, B.J., Balaban, C., Schreiber, S., Chiu, W.T., Pick, C.G. (2011). A mouse model of blast-induced mild traumatic brain injury. Experimental Neurology, 232(2), 280–289.PubMedCentralPubMedCrossRef Rubovitch, V., Ten-Bosch, M., Zohar, O., Harrison, C.R., Tempel-Brami, C., Stein, E., Hoffer, B.J., Balaban, C., Schreiber, S., Chiu, W.T., Pick, C.G. (2011). A mouse model of blast-induced mild traumatic brain injury. Experimental Neurology, 232(2), 280–289.PubMedCentralPubMedCrossRef
Zurück zum Zitat Scott, A. (2002). Neuroscience: a mathematical primer: Springer. Scott, A. (2002). Neuroscience: a mathematical primer: Springer.
Zurück zum Zitat Segev, I., & Schneidman, E. (1999). Axons as computing devices: basic insights gained from models. The Journal of Physiology, 93, 263–270. Segev, I., & Schneidman, E. (1999). Axons as computing devices: basic insights gained from models. The Journal of Physiology, 93, 263–270.
Zurück zum Zitat Shepherd, G.M.G., & Harris, K. (1998). Three-dimensional structure and composition of CA3 to CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. Journal of Neuroscience, 18(20). Shepherd, G.M.G., & Harris, K. (1998). Three-dimensional structure and composition of CA3 to CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. Journal of Neuroscience, 18(20).
Zurück zum Zitat Smith, D.H., Wolf, J.W., Lusardi, T.A., Lee, V.M.Y., Meaney, D.F. (1999). High tolerance and delayed elastic response of cultured axons to dynamic stretch injury. The Journal of Neuroscience, 19(11), 4263–4269.PubMed Smith, D.H., Wolf, J.W., Lusardi, T.A., Lee, V.M.Y., Meaney, D.F. (1999). High tolerance and delayed elastic response of cultured axons to dynamic stretch injury. The Journal of Neuroscience, 19(11), 4263–4269.PubMed
Zurück zum Zitat Smith, D.O. (1980). Mechanisms of action potential propagation failure at sites of axon branching in the crayfish. The Journal of Physiology, 301, 243–259.PubMedCentralPubMed Smith, D.O. (1980). Mechanisms of action potential propagation failure at sites of axon branching in the crayfish. The Journal of Physiology, 301, 243–259.PubMedCentralPubMed
Zurück zum Zitat Tang-Schomer, M.D., Johnson, V.E., Baas, P.W., Stewart, W., Smith, D.H (2012). Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Experimental Neurology, 233, 364–372.PubMedCentralPubMedCrossRef Tang-Schomer, M.D., Johnson, V.E., Baas, P.W., Stewart, W., Smith, D.H (2012). Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Experimental Neurology, 233, 364–372.PubMedCentralPubMedCrossRef
Zurück zum Zitat Tang-Schomer, M.D., Patel, A.R., Bass, P.W., Smith, D.H (2010). Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. The FASEB Journal, 24(5), 1401–1410.PubMedCentralCrossRef Tang-Schomer, M.D., Patel, A.R., Bass, P.W., Smith, D.H (2010). Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. The FASEB Journal, 24(5), 1401–1410.PubMedCentralCrossRef
Zurück zum Zitat Trapp, B.D., Peterson, J., Ransohoff, R.M., Rudick, R., Mrk, S., B L. (1998). Axonal transection in the lesions of multiple sclerosis. The New England Journal of Medicine, 338, 278–285. Trapp, B.D., Peterson, J., Ransohoff, R.M., Rudick, R., Mrk, S., B L. (1998). Axonal transection in the lesions of multiple sclerosis. The New England Journal of Medicine, 338, 278–285.
Zurück zum Zitat Tsai, J., Grutzendler, J., Duff, K., Gan, W.B. (2004). Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nature Neuroscience, 7, 1181–1183.PubMedCrossRef Tsai, J., Grutzendler, J., Duff, K., Gan, W.B. (2004). Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nature Neuroscience, 7, 1181–1183.PubMedCrossRef
Zurück zum Zitat Victor, J.D., & Purpura, K.P. (1997). Metric space analysis of spike trains: theory, algorithms and application. Network: Computational Neural Systems, 8, 127–164.CrossRef Victor, J.D., & Purpura, K.P. (1997). Metric space analysis of spike trains: theory, algorithms and application. Network: Computational Neural Systems, 8, 127–164.CrossRef
Zurück zum Zitat Wang, J., Hamm, R.J., Povlishock, J.T. (2011). Traumatic axonal injury in the optic nerve: evidence for axonal swelling, disconnection, dieback and reorganization. Journal of Neurotrauma, 28(7), 1185–1198.PubMedCentralPubMedCrossRef Wang, J., Hamm, R.J., Povlishock, J.T. (2011). Traumatic axonal injury in the optic nerve: evidence for axonal swelling, disconnection, dieback and reorganization. Journal of Neurotrauma, 28(7), 1185–1198.PubMedCentralPubMedCrossRef
Zurück zum Zitat Zhou, Y., & Bell, J. (1994). Study of propagation along nonuniform excitable fibers. Mathematical Biosciences, 119(2), 169–203.PubMedCrossRef Zhou, Y., & Bell, J. (1994). Study of propagation along nonuniform excitable fibers. Mathematical Biosciences, 119(2), 169–203.PubMedCrossRef
Metadaten
Titel
Compromised axonal functionality after neurodegeneration, concussion and/or traumatic brain injury
verfasst von
Pedro D. Maia
J. Nathan Kutz
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2014
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-014-0504-x

Weitere Artikel der Ausgabe 2/2014

Journal of Computational Neuroscience 2/2014 Zur Ausgabe

Premium Partner