Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2014

01.04.2014

Identifying critical regions for spike propagation in axon segments

verfasst von: Pedro D. Maia, J. Nathan Kutz

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Morphological reconstructions of axon segments reveal the abundance of geometrical ultrastructures that can dramatically affect the propagation of Action Potentials (AP). Moreover, deformations and swellings in axons resulting from brain traumas are associated to many neural dysfunctions and disorders. Our aim is to develop a computational framework to distinguish between geometrical enlargements that lead to minor changes in propagation from those that result in critical phenomenon such as reflection or blockage of the original traveling spike. We use a few geometrical parameters to model a prototypical shaft enlargement and explore the parameter space characterizing all possible propagation regimes and dynamics in an unmylienated AP model. Contrary to earlier notions that large diameter increases mostly lead to blocking, we demonstrate transmission is stable provided the geometrical changes occur in a slow manner. Our method also identifies a narrow range of parameters leading to a reflection regime. The distinction between these three regimes can be evaluated by a simple function of the geometrical parameters inferred through numerical simulations. We suggest that evaluating this function along axon segments can detect regions most susceptible to (i) transmission failure due to perturbations, (ii) structural plasticity, (iii) critical swellings caused by brain traumas and/or (iv) neurological disorders associated with the break down of spike train propagation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Altenberger, R., Lindsay, K.A., Ogden, J.M., Rosenberg, J.R. (2001). The interaction between membrane kinetics and membrane geometry in the transmission of action potentials in non-uniform excitable fibres: a finite element approach. Journal of Neuroscience Methods, 112, 101–117.PubMedCrossRef Altenberger, R., Lindsay, K.A., Ogden, J.M., Rosenberg, J.R. (2001). The interaction between membrane kinetics and membrane geometry in the transmission of action potentials in non-uniform excitable fibres: a finite element approach. Journal of Neuroscience Methods, 112, 101–117.PubMedCrossRef
Zurück zum Zitat Antic, S., Wuskell, J.P., Loew, L., Zecevic, D. (2000). Functional profile of the giant metacerebral neuron of Helix aspersa: temporal and spatial dynamics of electrical activity in situ. The Journal of Physiology, 527, 55–69.PubMedCentralPubMedCrossRef Antic, S., Wuskell, J.P., Loew, L., Zecevic, D. (2000). Functional profile of the giant metacerebral neuron of Helix aspersa: temporal and spatial dynamics of electrical activity in situ. The Journal of Physiology, 527, 55–69.PubMedCentralPubMedCrossRef
Zurück zum Zitat Baccus, S.A. (1998). Synaptic facilitation by reflected action potentials: enhancement of transmission when nerve impulses reverse direction at axon branch points. Proceedings of the National Academy of Sciences, 95(14), 8345–8350.CrossRef Baccus, S.A. (1998). Synaptic facilitation by reflected action potentials: enhancement of transmission when nerve impulses reverse direction at axon branch points. Proceedings of the National Academy of Sciences, 95(14), 8345–8350.CrossRef
Zurück zum Zitat Baccus, S.A., Burrell, B.D., Sahley, C.L., Muller, K.J. (2000). Action potential reflection and failure at axon branch points cause stepwise changes in EPSPs in a neuron essential for learning. Journal of Neurophysiology, 83(3), 1693–1700.PubMed Baccus, S.A., Burrell, B.D., Sahley, C.L., Muller, K.J. (2000). Action potential reflection and failure at axon branch points cause stepwise changes in EPSPs in a neuron essential for learning. Journal of Neurophysiology, 83(3), 1693–1700.PubMed
Zurück zum Zitat Barron, D.H., & Matthews, B.H. (1935). Intermittent conduction in the spinal cord. The Journal of Physiology, 85, 73–103. Neuron, 60(4), 590–597.PubMedCentralPubMed Barron, D.H., & Matthews, B.H. (1935). Intermittent conduction in the spinal cord. The Journal of Physiology, 85, 73–103. Neuron, 60(4), 590–597.PubMedCentralPubMed
Zurück zum Zitat Beeman, D., & Bower, J.M. (1998). The book of genesis: exploring realistic neural models with the general neural simulation system (2nd Ed.). New York: Springer-Verlag. Beeman, D., & Bower, J.M. (1998). The book of genesis: exploring realistic neural models with the general neural simulation system (2nd Ed.). New York: Springer-Verlag.
Zurück zum Zitat Bielefeldt, K., & Jackson, M.B. (1993). A calcium-activated potassium chan- nel causes frequency-dependent action-potential failures in a mammalian nerve terminal. Journal of Neurophysiology, 70, 284–298.PubMed Bielefeldt, K., & Jackson, M.B. (1993). A calcium-activated potassium chan- nel causes frequency-dependent action-potential failures in a mammalian nerve terminal. Journal of Neurophysiology, 70, 284–298.PubMed
Zurück zum Zitat Bourque, C.W. (1990). Intraterminal recordings from the rat neurohypophysis in vitro. The Journal of Physiology, 421, 247–262.PubMedCentralPubMed Bourque, C.W. (1990). Intraterminal recordings from the rat neurohypophysis in vitro. The Journal of Physiology, 421, 247–262.PubMedCentralPubMed
Zurück zum Zitat Bucher, D., & Goaillard, J.M. (2011). Beyond faithful conduction: short term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon. Progress in Neurobiology, 94, 307–346.PubMedCentralPubMedCrossRef Bucher, D., & Goaillard, J.M. (2011). Beyond faithful conduction: short term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon. Progress in Neurobiology, 94, 307–346.PubMedCentralPubMedCrossRef
Zurück zum Zitat Butz, M., Worgotter, F., van Ooyen, A. (2009). Activity-dependent structural plasticity. Brain Research Reviews, 60(2), 287–305.PubMedCrossRef Butz, M., Worgotter, F., van Ooyen, A. (2009). Activity-dependent structural plasticity. Brain Research Reviews, 60(2), 287–305.PubMedCrossRef
Zurück zum Zitat Carnevale, N.T., & Hines, M.L. (2009). The neuron book. Cambridge: Cambridge University Press. Carnevale, N.T., & Hines, M.L. (2009). The neuron book. Cambridge: Cambridge University Press.
Zurück zum Zitat Chen, W.R., Shen, G.Y., Shepherd, G.M., Hines, M.L., Midtgaard, J. (2002). Multiple modes of action potential initiation and propagation in mitral cell primary dendrite. Journal of Neurophysiology, 88, 2755–2764.PubMedCrossRef Chen, W.R., Shen, G.Y., Shepherd, G.M., Hines, M.L., Midtgaard, J. (2002). Multiple modes of action potential initiation and propagation in mitral cell primary dendrite. Journal of Neurophysiology, 88, 2755–2764.PubMedCrossRef
Zurück zum Zitat Cooley, J.W., & Dodge, F.A. (1966). Digital computer solutions for excitation and propagation of the nerve impulse. Biophysical Journal, 6(5), 583–599.PubMedCentralPubMedCrossRef Cooley, J.W., & Dodge, F.A. (1966). Digital computer solutions for excitation and propagation of the nerve impulse. Biophysical Journal, 6(5), 583–599.PubMedCentralPubMedCrossRef
Zurück zum Zitat Dayan, P., & Abbot, F.L. (2001). Theoretical neuroscience. Cambridge: MIT Press. Dayan, P., & Abbot, F.L. (2001). Theoretical neuroscience. Cambridge: MIT Press.
Zurück zum Zitat Debanne, D. (2004). Information processing in the axon. Nature Reviews Neuroscience, 5(4), 304–316.PubMedCrossRef Debanne, D. (2004). Information processing in the axon. Nature Reviews Neuroscience, 5(4), 304–316.PubMedCrossRef
Zurück zum Zitat Debanne, D., Guerineau, N.C., Gahwiler, B.H., Thompson, S.M. (1997). Action-potential propagation gated by an axonal I(A)-like K?? conductance in hippocampus. Nature, 389, 286–289.PubMedCrossRef Debanne, D., Guerineau, N.C., Gahwiler, B.H., Thompson, S.M. (1997). Action-potential propagation gated by an axonal I(A)-like K?? conductance in hippocampus. Nature, 389, 286–289.PubMedCrossRef
Zurück zum Zitat Debanne, D., Campanac, E., Bialowas, A., Carlier, E., Alcaraz, G. (2011). Axon physiology. Physiological Reviews, 91, 555–602.PubMedCrossRef Debanne, D., Campanac, E., Bialowas, A., Carlier, E., Alcaraz, G. (2011). Axon physiology. Physiological Reviews, 91, 555–602.PubMedCrossRef
Zurück zum Zitat De Paola, V., Holtmaat, A., Knott, G., Song, S., Willbrecht, L., Caroni, P., Svoboda, K. (2006). Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron, 49, 861–875.PubMedCrossRef De Paola, V., Holtmaat, A., Knott, G., Song, S., Willbrecht, L., Caroni, P., Svoboda, K. (2006). Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron, 49, 861–875.PubMedCrossRef
Zurück zum Zitat Deschenes, M., & Landry, P. (1980). Axonal branch diameter and spacing of nodes in the terminal arborization of identified thalamic and cortical neurons. Brain Research, 191, 538–544.PubMedCrossRef Deschenes, M., & Landry, P. (1980). Axonal branch diameter and spacing of nodes in the terminal arborization of identified thalamic and cortical neurons. Brain Research, 191, 538–544.PubMedCrossRef
Zurück zum Zitat Ducreux, C., Reynaud, J.C., Puizillout, J.J. (1993). Spike conduction properties of T-shaped C neurons in the rabbit nodose ganglion. Pflgers Arch, 424, 238–244.CrossRef Ducreux, C., Reynaud, J.C., Puizillout, J.J. (1993). Spike conduction properties of T-shaped C neurons in the rabbit nodose ganglion. Pflgers Arch, 424, 238–244.CrossRef
Zurück zum Zitat Dyball, R.E., Grossmann, R., Leng, G., Shibuki, K. (1988). Spike propagation and conduction failure in the rat neural lobe. The Journal of Physiology, 401, 241–256.PubMedCentralPubMed Dyball, R.E., Grossmann, R., Leng, G., Shibuki, K. (1988). Spike propagation and conduction failure in the rat neural lobe. The Journal of Physiology, 401, 241–256.PubMedCentralPubMed
Zurück zum Zitat Ermentrout, G.B., & Rinzel, J. (1996). Reflected waves in an inhomogeneous excitable medium. SIAM Journal on Applied Mathematics, 56(4), 1107–1128.CrossRef Ermentrout, G.B., & Rinzel, J. (1996). Reflected waves in an inhomogeneous excitable medium. SIAM Journal on Applied Mathematics, 56(4), 1107–1128.CrossRef
Zurück zum Zitat Evans, C.G., Ludwar, B., Cropper, E.C. (2007). Mechanoafferent neuron with an inexcitable somatic region: consequences for the regulation of spike propagation and afferent transmission. Journal of Neurophysiology, 97, 3126–3130.PubMedCrossRef Evans, C.G., Ludwar, B., Cropper, E.C. (2007). Mechanoafferent neuron with an inexcitable somatic region: consequences for the regulation of spike propagation and afferent transmission. Journal of Neurophysiology, 97, 3126–3130.PubMedCrossRef
Zurück zum Zitat Fiala, J.C., Spacek, J., Harris, K.M. (2002). Dendritic spine pathology: cause or consequence of neurological disorders? Brain Research Reviews, 39, 29–54.PubMedCrossRef Fiala, J.C., Spacek, J., Harris, K.M. (2002). Dendritic spine pathology: cause or consequence of neurological disorders? Brain Research Reviews, 39, 29–54.PubMedCrossRef
Zurück zum Zitat Gogolla, N., Galimberti, I., Caroni, P. (2007). Structural plasticity of axon terminals in the adult. Current Opinion in Neurobiology, 17, 516–524.PubMedCrossRef Gogolla, N., Galimberti, I., Caroni, P. (2007). Structural plasticity of axon terminals in the adult. Current Opinion in Neurobiology, 17, 516–524.PubMedCrossRef
Zurück zum Zitat Goldfinger, M.D. (2005). Rallian equivalent cylinders reconsidered: comparisons with literal compartments. Journal of Integrative Neuroscience, 4(2), 227–263.PubMedCrossRef Goldfinger, M.D. (2005). Rallian equivalent cylinders reconsidered: comparisons with literal compartments. Journal of Integrative Neuroscience, 4(2), 227–263.PubMedCrossRef
Zurück zum Zitat Goldstein, S.S., & Rall, W. (1974). Changes of action potential shape and velocity for changing core conductor geometry. Biophysical Journal, 14, 731–757.PubMedCentralPubMedCrossRef Goldstein, S.S., & Rall, W. (1974). Changes of action potential shape and velocity for changing core conductor geometry. Biophysical Journal, 14, 731–757.PubMedCentralPubMedCrossRef
Zurück zum Zitat Grossman, Y., Parnas, I., Spira, M.E. (1979a). Differential conduction block in branches of a bifurcating axon. The Journal of Physiology, 295, 283–305.PubMedCentralPubMed Grossman, Y., Parnas, I., Spira, M.E. (1979a). Differential conduction block in branches of a bifurcating axon. The Journal of Physiology, 295, 283–305.PubMedCentralPubMed
Zurück zum Zitat Grossman, Y., Parnas, I., Spira, M.E. (1979b). Mechanisms involved in differential conduction of potentials at high frequency in a branching axon. The Journal of Physiology, 295, 307–322.PubMedCentralPubMed Grossman, Y., Parnas, I., Spira, M.E. (1979b). Mechanisms involved in differential conduction of potentials at high frequency in a branching axon. The Journal of Physiology, 295, 307–322.PubMedCentralPubMed
Zurück zum Zitat Gu, X.N. (1991). Effect of conduction block at axon bifurcations on synaptic transmission to different postsynaptic neurones in the leech. The Journal of Physiology, 441, 755–778.PubMedCentralPubMed Gu, X.N. (1991). Effect of conduction block at axon bifurcations on synaptic transmission to different postsynaptic neurones in the leech. The Journal of Physiology, 441, 755–778.PubMedCentralPubMed
Zurück zum Zitat Hatt, H., & Smith, D.O. (1976). Synaptic depression related to presynaptic axon conduction block. The Journal of Physiology, 259, 367–393.PubMedCentralPubMed Hatt, H., & Smith, D.O. (1976). Synaptic depression related to presynaptic axon conduction block. The Journal of Physiology, 259, 367–393.PubMedCentralPubMed
Zurück zum Zitat Hines, M.L., & Carnevale, N.T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.PubMedCrossRef Hines, M.L., & Carnevale, N.T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.PubMedCrossRef
Zurück zum Zitat Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500–545.PubMedCentralPubMed Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500–545.PubMedCentralPubMed
Zurück zum Zitat Holtmaat, A., & Svoboda, K. (2009). Experience-dependent structural synaptic plasticity in the mammalian brain. Nature Reviews Neuroscience, 10(9), 647–658.PubMedCrossRef Holtmaat, A., & Svoboda, K. (2009). Experience-dependent structural synaptic plasticity in the mammalian brain. Nature Reviews Neuroscience, 10(9), 647–658.PubMedCrossRef
Zurück zum Zitat Izhikevich, E.M. (2007). Dynamical systems in neuroscience: the geometry of excitability and bursting. Cambridge: MIT Press. Izhikevich, E.M. (2007). Dynamical systems in neuroscience: the geometry of excitability and bursting. Cambridge: MIT Press.
Zurück zum Zitat Jackson, M.B., & Zhang, S.J. (1995). Action potential propagation and propagation block by GABA in rat posterior pituitary nerve terminals. The Journal of Physiology, 483, 597–611.PubMedCentralPubMed Jackson, M.B., & Zhang, S.J. (1995). Action potential propagation and propagation block by GABA in rat posterior pituitary nerve terminals. The Journal of Physiology, 483, 597–611.PubMedCentralPubMed
Zurück zum Zitat Khodorov, B.I., & Timin, E.N. (1975). Nerve impulse propagation along nonuniform fibres. Progress in Biophysics and Molecular Biology, 30(23), 145–184.PubMed Khodorov, B.I., & Timin, E.N. (1975). Nerve impulse propagation along nonuniform fibres. Progress in Biophysics and Molecular Biology, 30(23), 145–184.PubMed
Zurück zum Zitat Krnjevic, K., & Miledi, R. (1959). Presynaptic failure of neuromuscular propagation in rats. The Journal of Physiology, 149, 1–22.PubMedCentralPubMed Krnjevic, K., & Miledi, R. (1959). Presynaptic failure of neuromuscular propagation in rats. The Journal of Physiology, 149, 1–22.PubMedCentralPubMed
Zurück zum Zitat Kutz, J.N. (2013). Data-driven modeling and scientific computing. New York: Oxford Press. Kutz, J.N. (2013). Data-driven modeling and scientific computing. New York: Oxford Press.
Zurück zum Zitat Luscher, H.R., & Shiner, J.S. (1990a). Computation of action potential propagation and presynaptic bouton activation in terminal arborizations of different geometries. Biophysical Journal, 58(6), 1377–1388.PubMedCentralPubMedCrossRef Luscher, H.R., & Shiner, J.S. (1990a). Computation of action potential propagation and presynaptic bouton activation in terminal arborizations of different geometries. Biophysical Journal, 58(6), 1377–1388.PubMedCentralPubMedCrossRef
Zurück zum Zitat Luscher, H.R., & Shiner, J.S. (1990b). Simulation of action potential propagation in complex terminal arborizations. Biophysical Journal, 58(6), 1389–1399.PubMedCentralPubMedCrossRef Luscher, H.R., & Shiner, J.S. (1990b). Simulation of action potential propagation in complex terminal arborizations. Biophysical Journal, 58(6), 1389–1399.PubMedCentralPubMedCrossRef
Zurück zum Zitat Luscher, C., Streit, J., Lipp, P., Luscher, H.R. (1994). Action potential propagation through embryonic dorsal root ganglion cells in culture. II. Decrease of conduction reliability during repetitive stimulation. Journal of Neurophysiology, 72, 634–643.PubMed Luscher, C., Streit, J., Lipp, P., Luscher, H.R. (1994). Action potential propagation through embryonic dorsal root ganglion cells in culture. II. Decrease of conduction reliability during repetitive stimulation. Journal of Neurophysiology, 72, 634–643.PubMed
Zurück zum Zitat Magdesian, M., Sanchez, F.S., Lopez, M., Thostrup, P., Durisic, N., Belkaid, W., Liazoghli, D., Grütter, P., Colman, R. (2012). Atomic force microscopy reveals important differences in axonal resistance to injury. Biophysical Journal, 103(3), 405–414.PubMedCentralPubMedCrossRef Magdesian, M., Sanchez, F.S., Lopez, M., Thostrup, P., Durisic, N., Belkaid, W., Liazoghli, D., Grütter, P., Colman, R. (2012). Atomic force microscopy reveals important differences in axonal resistance to injury. Biophysical Journal, 103(3), 405–414.PubMedCentralPubMedCrossRef
Zurück zum Zitat Manor, Y., Gonczarowski, J., Segev, I. (1991a). Propagation of action potentials along complex axonal trees. Model and implementation. Biophysical Journal, 60(6), 1411–1423.PubMedCentralPubMedCrossRef Manor, Y., Gonczarowski, J., Segev, I. (1991a). Propagation of action potentials along complex axonal trees. Model and implementation. Biophysical Journal, 60(6), 1411–1423.PubMedCentralPubMedCrossRef
Zurück zum Zitat Manor, Y., Koch, C., Segev, I. (1991b). Effect of geometrical irregularities on propagation delay in axonal trees. Biophysical Journal, 60, 1424–1437.PubMedCentralPubMedCrossRef Manor, Y., Koch, C., Segev, I. (1991b). Effect of geometrical irregularities on propagation delay in axonal trees. Biophysical Journal, 60, 1424–1437.PubMedCentralPubMedCrossRef
Zurück zum Zitat Marcuse, D. (1974). Theory of dielectric optical waveguides. New York: Academic Press. Marcuse, D. (1974). Theory of dielectric optical waveguides. New York: Academic Press.
Zurück zum Zitat Mascagni, M. (1990). The backward Euler method for numerical solution of the Hodgkin–Huxley equations of nerve conduction. SIAM Journal on Numerical Analysis, 27(4), 941–962.CrossRef Mascagni, M. (1990). The backward Euler method for numerical solution of the Hodgkin–Huxley equations of nerve conduction. SIAM Journal on Numerical Analysis, 27(4), 941–962.CrossRef
Zurück zum Zitat Maxwell, W.L., Povlishock, J.T., Graham, D.L. (1997). A mechanistic analysis of nondisruptive axonal injury: a review. Journal of Neurotrauma, 17(7), 419–440.CrossRef Maxwell, W.L., Povlishock, J.T., Graham, D.L. (1997). A mechanistic analysis of nondisruptive axonal injury: a review. Journal of Neurotrauma, 17(7), 419–440.CrossRef
Zurück zum Zitat Meeks, J.P., & Mennerick, S. (2004). Selective effects of potassium elevations on glutamate signaling and action potential conduction in hippocampus. Journal of Neuroscience, 24, 197–206.PubMedCrossRef Meeks, J.P., & Mennerick, S. (2004). Selective effects of potassium elevations on glutamate signaling and action potential conduction in hippocampus. Journal of Neuroscience, 24, 197–206.PubMedCrossRef
Zurück zum Zitat Miura, R.M. (1982). Accurate computation of the stable solitary wave for the FitzHugh–Nagumo equations. Journal of Mathematical Biology, 13(3), 247–269.CrossRef Miura, R.M. (1982). Accurate computation of the stable solitary wave for the FitzHugh–Nagumo equations. Journal of Mathematical Biology, 13(3), 247–269.CrossRef
Zurück zum Zitat Nagumo, S., Arimoto, Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 50(10), 2061–2070.CrossRef Nagumo, S., Arimoto, Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 50(10), 2061–2070.CrossRef
Zurück zum Zitat Parnas, I. (1979). Propagation in nonuniform neurites: form and function in axons. In F.O. Schmitt & F.G. Worden (Eds.), The neurosciences (pp. 499–512). Cambridge: MIT Press. Parnas, I. (1979). Propagation in nonuniform neurites: form and function in axons. In F.O. Schmitt & F.G. Worden (Eds.), The neurosciences (pp. 499–512). Cambridge: MIT Press.
Zurück zum Zitat Parnas, I. (1972). Differential block at high frequency of branches of a single axon innervating two muscles. Journal of Neurophysiology, 35, 903–914.PubMed Parnas, I. (1972). Differential block at high frequency of branches of a single axon innervating two muscles. Journal of Neurophysiology, 35, 903–914.PubMed
Zurück zum Zitat Parnas, I., Hochstein, S., Parnas, H. (1976). Theoretical analysis of parameters leading to frequency modulation along an inhomogeneous axon. Journal of Neurophysiology, 39(4), 909–923.PubMed Parnas, I., Hochstein, S., Parnas, H. (1976). Theoretical analysis of parameters leading to frequency modulation along an inhomogeneous axon. Journal of Neurophysiology, 39(4), 909–923.PubMed
Zurück zum Zitat Purpura, D.P., Bodick, N., Suzuki, K., Rapin I., Wurzelmann, S. (1982). Microtubule disarray in cortical dendrites and neurobehavioral failure. I. Golgi and electron microscopy studies. Developing Brain Research, 5, 287–297.CrossRef Purpura, D.P., Bodick, N., Suzuki, K., Rapin I., Wurzelmann, S. (1982). Microtubule disarray in cortical dendrites and neurobehavioral failure. I. Golgi and electron microscopy studies. Developing Brain Research, 5, 287–297.CrossRef
Zurück zum Zitat Ramon, F., Joyner, R.W., Moore, J.W. (1975). Propagation of action potentials in inhomogeneous axon regions. Federation Proceedings, 34, 1357–1363.PubMed Ramon, F., Joyner, R.W., Moore, J.W. (1975). Propagation of action potentials in inhomogeneous axon regions. Federation Proceedings, 34, 1357–1363.PubMed
Zurück zum Zitat Rall, W. (1959). Branching dendritic trees and motoneuron membrane resistivity. Experimental Neurology, 1, 491–527.PubMedCrossRef Rall, W. (1959). Branching dendritic trees and motoneuron membrane resistivity. Experimental Neurology, 1, 491–527.PubMedCrossRef
Zurück zum Zitat Rall, W. (1962). Theory of physiological properties of dendrites. Annals of the New York Academy of Sciences, 96, 1071–1092.PubMedCrossRef Rall, W. (1962). Theory of physiological properties of dendrites. Annals of the New York Academy of Sciences, 96, 1071–1092.PubMedCrossRef
Zurück zum Zitat Rall, W., & Shepherd, J. (1968). Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. Journal of Neurophysiology, 173, 884–905. Rall, W., & Shepherd, J. (1968). Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. Journal of Neurophysiology, 173, 884–905.
Zurück zum Zitat Rinzel, J. (1990). Mechanisms for nonuniform propagation along excitable cables. Annals of the New York Academy of Sciences, 591, 51–61.PubMedCrossRef Rinzel, J. (1990). Mechanisms for nonuniform propagation along excitable cables. Annals of the New York Academy of Sciences, 591, 51–61.PubMedCrossRef
Zurück zum Zitat Scott, A. (2002). Neuroscience: a mathematical primer. New York: Springer. Scott, A. (2002). Neuroscience: a mathematical primer. New York: Springer.
Zurück zum Zitat Segev, I., & Rall, W. (1998). Excitable dendrites and spines: earlier theoretical insights elucidate recent direct observations. Trends in Neuroscience, 21(11), 453–460.CrossRef Segev, I., & Rall, W. (1998). Excitable dendrites and spines: earlier theoretical insights elucidate recent direct observations. Trends in Neuroscience, 21(11), 453–460.CrossRef
Zurück zum Zitat Segev, I., & Schneidman, E. (1999). Axons as computing devices: basic insights gained from models. The Journal of Physiology, 93, 263–270. Segev, I., & Schneidman, E. (1999). Axons as computing devices: basic insights gained from models. The Journal of Physiology, 93, 263–270.
Zurück zum Zitat Segev, I., Rinzel, J., Shepherd, G.M. (Eds.) (1995). The theoretical foundation of dendritic function: selected papers of Wilfred Rall with commentaries. Cambridge: Bradford/MIT Press. Segev, I., Rinzel, J., Shepherd, G.M. (Eds.) (1995). The theoretical foundation of dendritic function: selected papers of Wilfred Rall with commentaries. Cambridge: Bradford/MIT Press.
Zurück zum Zitat Shepherd, G.M.G., & Harris, K. (1998). Three-dimensional structure and composition of CA3 to CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. Journal of Neuroscience, 18(20), 8300–8310.PubMed Shepherd, G.M.G., & Harris, K. (1998). Three-dimensional structure and composition of CA3 to CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. Journal of Neuroscience, 18(20), 8300–8310.PubMed
Zurück zum Zitat Smith, D.O. (1980). Mechanisms of action potential propagation failure at sites of axon branching in the crayfish. The Journal of Physiology, 301, 243–259.PubMedCentralPubMed Smith, D.O. (1980). Mechanisms of action potential propagation failure at sites of axon branching in the crayfish. The Journal of Physiology, 301, 243–259.PubMedCentralPubMed
Zurück zum Zitat Smith, D.H., Wolf, J.W., Lusardi, T.A., Lee, V.M.Y., Meaney, D.F. (1999). High tolerance and delayed elastic response of cultured axons to dynamic stretch injury. The Journal of Neuroscience, 19(11), 4263–4269.PubMed Smith, D.H., Wolf, J.W., Lusardi, T.A., Lee, V.M.Y., Meaney, D.F. (1999). High tolerance and delayed elastic response of cultured axons to dynamic stretch injury. The Journal of Neuroscience, 19(11), 4263–4269.PubMed
Zurück zum Zitat Soleng, A.F., Chiu, K., Raastad, M. (2003). Unmyelinated axons in the rat hippocampus hyperpolarize and activate an H current when spike frequency exceeds 1 Hz. The Journal of Physiology, 552, 459–470.PubMedCentralPubMedCrossRef Soleng, A.F., Chiu, K., Raastad, M. (2003). Unmyelinated axons in the rat hippocampus hyperpolarize and activate an H current when spike frequency exceeds 1 Hz. The Journal of Physiology, 552, 459–470.PubMedCentralPubMedCrossRef
Zurück zum Zitat Tang-Schomer, M.D., Patel, A.R., Bass, P.W., Smith, D.H. (2010). Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. The FASEB Journal, 24(5), 1401–1410.PubMedCentralCrossRef Tang-Schomer, M.D., Patel, A.R., Bass, P.W., Smith, D.H. (2010). Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. The FASEB Journal, 24(5), 1401–1410.PubMedCentralCrossRef
Zurück zum Zitat Tang-Schomer, M.D., Johnson, V.E., Baas, P.W., Stewart, W., Smith, D.H. (2012). Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Experimental Neurology, 233, 364–372.PubMedCrossRef Tang-Schomer, M.D., Johnson, V.E., Baas, P.W., Stewart, W., Smith, D.H. (2012). Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Experimental Neurology, 233, 364–372.PubMedCrossRef
Zurück zum Zitat Tóth, T.I., & Cruneli, V. (1998). Effects of tapering geometry and inhomogeneous ion channel distribution in a neuron model. Neuroscience, 84(4), 1223–1232.PubMedCrossRef Tóth, T.I., & Cruneli, V. (1998). Effects of tapering geometry and inhomogeneous ion channel distribution in a neuron model. Neuroscience, 84(4), 1223–1232.PubMedCrossRef
Zurück zum Zitat Trefethen, L.N. (2000). Spectral methods in matlab. Philadelphia: SIAM.CrossRef Trefethen, L.N. (2000). Spectral methods in matlab. Philadelphia: SIAM.CrossRef
Zurück zum Zitat Van Essen, D.C. (1973). The contribution of membrane hyperpolarization to adaptation and conduction block in sensory neurons of the leech. The Journal of Physiology, 230, 509–534.PubMedCentralPubMed Van Essen, D.C. (1973). The contribution of membrane hyperpolarization to adaptation and conduction block in sensory neurons of the leech. The Journal of Physiology, 230, 509–534.PubMedCentralPubMed
Zurück zum Zitat Vladimirescu, A., Zhang, K., Newton, A.R., Pederson, D.O., Sangiovanni-Vincentelli, A. (1981). SPICE version 2G user’s guide. Berkeley: Department of Electrical Engineering and Computer Sciences, University of California. Vladimirescu, A., Zhang, K., Newton, A.R., Pederson, D.O., Sangiovanni-Vincentelli, A. (1981). SPICE version 2G user’s guide. Berkeley: Department of Electrical Engineering and Computer Sciences, University of California.
Zurück zum Zitat Wang, J., Hamm, R.J., Povlishock, J.T. (2011). Traumatic axonal injury in the optic nerve: evidence for axonal swelling, disconnection, dieback and reorganization. Journal of Neurotrauma, 28(7), 1185–1198.PubMedCentralPubMedCrossRef Wang, J., Hamm, R.J., Povlishock, J.T. (2011). Traumatic axonal injury in the optic nerve: evidence for axonal swelling, disconnection, dieback and reorganization. Journal of Neurotrauma, 28(7), 1185–1198.PubMedCentralPubMedCrossRef
Zurück zum Zitat Xiong, Y., Mahmood, A., Chopp, M. (2013). Animal models of traumatic brain injury. Nature Reviews Neuroscience, 14(2), 128–142.PubMedCrossRef Xiong, Y., Mahmood, A., Chopp, M. (2013). Animal models of traumatic brain injury. Nature Reviews Neuroscience, 14(2), 128–142.PubMedCrossRef
Zurück zum Zitat Xylouris, K., Queisser, G., Wittum, G. (2010). A three-dimensional mathematical model of active signal processing in axons. Computing and Visualization in Science, 13(8), 409–418.CrossRef Xylouris, K., Queisser, G., Wittum, G. (2010). A three-dimensional mathematical model of active signal processing in axons. Computing and Visualization in Science, 13(8), 409–418.CrossRef
Zurück zum Zitat Yau, K.W. (1976). Receptive fields, geometry and conduction block of sensory neurones in the central nervous system of the leech. The Journal of Physiology, 263, 513–538.PubMedCentralPubMed Yau, K.W. (1976). Receptive fields, geometry and conduction block of sensory neurones in the central nervous system of the leech. The Journal of Physiology, 263, 513–538.PubMedCentralPubMed
Zurück zum Zitat Zhang, S.J., & Jackson, M.B. (1993). GABA-activated chloride channels in secretory nerve endings. Science, 259, 531–534.PubMedCrossRef Zhang, S.J., & Jackson, M.B. (1993). GABA-activated chloride channels in secretory nerve endings. Science, 259, 531–534.PubMedCrossRef
Zurück zum Zitat Zhou, Y., & Bell, J. (1994). Study of propagation along nonuniform excitable fibers. Mathematical Biosciences, 119(2), 169–203.PubMedCrossRef Zhou, Y., & Bell, J. (1994). Study of propagation along nonuniform excitable fibers. Mathematical Biosciences, 119(2), 169–203.PubMedCrossRef
Metadaten
Titel
Identifying critical regions for spike propagation in axon segments
verfasst von
Pedro D. Maia
J. Nathan Kutz
Publikationsdatum
01.04.2014
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2014
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-013-0459-3

Weitere Artikel der Ausgabe 2/2014

Journal of Computational Neuroscience 2/2014 Zur Ausgabe

Premium Partner