Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2014

01.04.2014

Conductance-based refractory density model of primary visual cortex

verfasst von: Anton V. Chizhov

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A layered continual population model of primary visual cortex has been constructed, which reproduces a set of experimental data, including postsynaptic responses of single neurons on extracellular electric stimulation and spatially distributed activity patterns in response to visual stimulation. In the model, synaptically interacting excitatory and inhibitory neuronal populations are described by a conductance-based refractory density approach. Populations of two-compartment excitatory and inhibitory neurons in cortical layers 2/3 and 4 are distributed in the 2-d cortical space and connected by AMPA, NMDA and GABA type synapses. The external connections are pinwheel-like, according to the orientation of a stimulus. Intracortical connections are isotropic local and patchy between neurons with similar orientations. The model proposes better temporal resolution and more detailed elaboration than conventional mean-field models. In comparison to large network simulations, it excludes a posteriori statistical data manipulation and provides better computational efficiency and minimal parametrization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Albrecht, D.G., Geisler, W.S., Frazor, R.A., Crane, A.M. (2002). Visual cortex neurons of monkeys and cats: temporal dynamics of the contrast response function. Journal of Neurophysiology, 88, 888–913.PubMed Albrecht, D.G., Geisler, W.S., Frazor, R.A., Crane, A.M. (2002). Visual cortex neurons of monkeys and cats: temporal dynamics of the contrast response function. Journal of Neurophysiology, 88, 888–913.PubMed
Zurück zum Zitat Bannister, A.P., & Thomson, A.M. (2006). Dynamic properties of excitatory synaptic connections involving layer 4 pyramidal cells in adult rat and cat neocortex. Cerebral Cortex, 17(9), 2190–2203.PubMedCrossRef Bannister, A.P., & Thomson, A.M. (2006). Dynamic properties of excitatory synaptic connections involving layer 4 pyramidal cells in adult rat and cat neocortex. Cerebral Cortex, 17(9), 2190–2203.PubMedCrossRef
Zurück zum Zitat Benucci, A., Ringach, D.L., Carandini, M. (2009). Coding of stimulus sequences by population responses in visual cortex. Nature Neuroscience, 12(10), 1317–1326.PubMedCentralPubMedCrossRef Benucci, A., Ringach, D.L., Carandini, M. (2009). Coding of stimulus sequences by population responses in visual cortex. Nature Neuroscience, 12(10), 1317–1326.PubMedCentralPubMedCrossRef
Zurück zum Zitat Blumenfeld, B., Bibichkov, D., Tsodyks, M. (2006). Neural network model of the primary visual cortex: from functional architecture to lateral connectivity and back. Journal of Computational Neuroscience, 20, 219–241.CrossRef Blumenfeld, B., Bibichkov, D., Tsodyks, M. (2006). Neural network model of the primary visual cortex: from functional architecture to lateral connectivity and back. Journal of Computational Neuroscience, 20, 219–241.CrossRef
Zurück zum Zitat Borg-Graham, L. (1999). Interpretations of data and mechanisms for hippocampal pyramidal cell models. Cerebral Cortex, 13, 19–138.CrossRef Borg-Graham, L. (1999). Interpretations of data and mechanisms for hippocampal pyramidal cell models. Cerebral Cortex, 13, 19–138.CrossRef
Zurück zum Zitat Buchin, A., Ju, Chizhov, A.V. (2010). Modified firing-rate model reproduces synchronization of a neuronal population receiving complex input. Optical Memory and Neural Networks (Information Optics), 2, 166–171.CrossRef Buchin, A., Ju, Chizhov, A.V. (2010). Modified firing-rate model reproduces synchronization of a neuronal population receiving complex input. Optical Memory and Neural Networks (Information Optics), 2, 166–171.CrossRef
Zurück zum Zitat Buhl, E.H., Tamas, G., Szilagyi, T., Stricker, C., Paulsen, O., Somogyi, P. (1997). Effect, number and location of synapses made by single pyramidal cells onto aspiny interneurones of cat visual cortex. Journal of Physiology, 500(3), 689–713.PubMedCentralPubMed Buhl, E.H., Tamas, G., Szilagyi, T., Stricker, C., Paulsen, O., Somogyi, P. (1997). Effect, number and location of synapses made by single pyramidal cells onto aspiny interneurones of cat visual cortex. Journal of Physiology, 500(3), 689–713.PubMedCentralPubMed
Zurück zum Zitat Chavane, F., Sharon, D., Jancke, D., Marre, O., Fregnac, Y., Grinvald, A. (2011). Lateral spread of orientation selectivity in V1 is controlled by intracortical cooperativity. Frontiers in Systems Neuroscience, 5(4), 1–26. Chavane, F., Sharon, D., Jancke, D., Marre, O., Fregnac, Y., Grinvald, A. (2011). Lateral spread of orientation selectivity in V1 is controlled by intracortical cooperativity. Frontiers in Systems Neuroscience, 5(4), 1–26.
Zurück zum Zitat Chizhov, A.V. (2002). A model for evoked activity of hippocampal neuronal population. Biofizika, 47(6), 1086–1094.PubMed Chizhov, A.V. (2002). A model for evoked activity of hippocampal neuronal population. Biofizika, 47(6), 1086–1094.PubMed
Zurück zum Zitat Chizhov, A.V. (2004). A two-compartment model for the dependence of a postsynaptic potential on a postsynaptic current, measured by the patch-clamp method. Biofizika, 49(5), 877–880.PubMed Chizhov, A.V. (2004). A two-compartment model for the dependence of a postsynaptic potential on a postsynaptic current, measured by the patch-clamp method. Biofizika, 49(5), 877–880.PubMed
Zurück zum Zitat Chizhov, A.V. (2010). A sequence of reductions in mathematical models of primary visual cortex. Mathematical biology and bioinformatics, 5(2), 150–161. in Russian. Chizhov, A.V. (2010). A sequence of reductions in mathematical models of primary visual cortex. Mathematical biology and bioinformatics, 5(2), 150–161. in Russian.
Zurück zum Zitat Chizhov, A.V., & Graham, L.J. (2007). Population model of hippocampal pyramidal neurons, linking a refractory density approach to conductance-based neurons. Physical Review E, 75, 011924.CrossRef Chizhov, A.V., & Graham, L.J. (2007). Population model of hippocampal pyramidal neurons, linking a refractory density approach to conductance-based neurons. Physical Review E, 75, 011924.CrossRef
Zurück zum Zitat Chizhov, A.V., & Graham, L.J. (2008). Efficient evaluation of neuron populations receiving colored-noise current based on a refractory density method. Physical Review E, 77, 011910.CrossRef Chizhov, A.V., & Graham, L.J. (2008). Efficient evaluation of neuron populations receiving colored-noise current based on a refractory density method. Physical Review E, 77, 011910.CrossRef
Zurück zum Zitat Chizhov, A.V., Smirnova, E.Y., Graham, L.J. (2009). Mapping between V1 models of orientation selectivity: from a distributed multi-population conductance-based refractory density model to a firing-rate ring model. BMC Neuroscience, 10(Suppl 1), 181.CrossRef Chizhov, A.V., Smirnova, E.Y., Graham, L.J. (2009). Mapping between V1 models of orientation selectivity: from a distributed multi-population conductance-based refractory density model to a firing-rate ring model. BMC Neuroscience, 10(Suppl 1), 181.CrossRef
Zurück zum Zitat Clifford, C.W., Pearson, J., Forte, J.D., Spehar, B. (2003). Colour and luminance selectivity of spatial and temporal interactions in orientation perception. Vision Research, 2885–2893. Clifford, C.W., Pearson, J., Forte, J.D., Spehar, B. (2003). Colour and luminance selectivity of spatial and temporal interactions in orientation perception. Vision Research, 2885–2893.
Zurück zum Zitat Dong, H., Wang, Q., Valkova, K., Gonchar, Y., Burkhalter, A. (2004). Experience-dependent development of feedforward and feedback circuits between lower and higher areas of mouse visual cortex. Vision Research, 44, 3389–3400.PubMedCrossRef Dong, H., Wang, Q., Valkova, K., Gonchar, Y., Burkhalter, A. (2004). Experience-dependent development of feedforward and feedback circuits between lower and higher areas of mouse visual cortex. Vision Research, 44, 3389–3400.PubMedCrossRef
Zurück zum Zitat Ferster, D., & Jagadeesh, B. (1992). EPSP-IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording. Journal of Neuroscience, 12(4), 1262–1274.PubMed Ferster, D., & Jagadeesh, B. (1992). EPSP-IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording. Journal of Neuroscience, 12(4), 1262–1274.PubMed
Zurück zum Zitat Gerstner, W., & Kistler, W.M. (2002). Spiking neuron models single neurons, populations, plasticity. Cambridge: University Press.CrossRef Gerstner, W., & Kistler, W.M. (2002). Spiking neuron models single neurons, populations, plasticity. Cambridge: University Press.CrossRef
Zurück zum Zitat Gimsa, U., Schreiber, U., Habel, B., Flehr, J., van Rienen, U., Gimsa, J. (2006). Matching geometry and stimulation parameters of electrodes for deep brain stimulation experiments—Numerical considerations. Journal of Neuroscience Methods, 150, 212–227.PubMedCrossRef Gimsa, U., Schreiber, U., Habel, B., Flehr, J., van Rienen, U., Gimsa, J. (2006). Matching geometry and stimulation parameters of electrodes for deep brain stimulation experiments—Numerical considerations. Journal of Neuroscience Methods, 150, 212–227.PubMedCrossRef
Zurück zum Zitat Grinvald, A., Lieke, E.E., Frostig, R.D., Hildesheim, R. (1994). Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. The Journal of Neuroscience, 14, 2545–2568.PubMed Grinvald, A., Lieke, E.E., Frostig, R.D., Hildesheim, R. (1994). Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. The Journal of Neuroscience, 14, 2545–2568.PubMed
Zurück zum Zitat Eggert, J., & van Hemmen, J.L. (2001). Modeling neuronal assemblies: theory and implementation. Neural Computation, 13, 1923–1974.PubMedCrossRef Eggert, J., & van Hemmen, J.L. (2001). Modeling neuronal assemblies: theory and implementation. Neural Computation, 13, 1923–1974.PubMedCrossRef
Zurück zum Zitat Hansel, D., & Sompolinsky, H. (1998). Modeling feature selectivity in local cortical circuits. In Koch, C., & Segev, I. (Eds.), Methods in neuronal modeling: From synapses to networks (pp. 499–567). Cambridge: MIT Press. Hansel, D., & Sompolinsky, H. (1998). Modeling feature selectivity in local cortical circuits. In Koch, C., & Segev, I. (Eds.), Methods in neuronal modeling: From synapses to networks (pp. 499–567). Cambridge: MIT Press.
Zurück zum Zitat Hill, S., & Tononi, G. (2005). Modeling sleep and wakefulness in the thalamocortical system. Journal of Neurophysiology, 93, 1671–1698.PubMedCrossRef Hill, S., & Tononi, G. (2005). Modeling sleep and wakefulness in the thalamocortical system. Journal of Neurophysiology, 93, 1671–1698.PubMedCrossRef
Zurück zum Zitat Hirsch, J.A., & Gilbert, C.D. (1991). Synapic physiology of horisontal connections in the cat’s visual cortex. Journal of Neuroscience, 11(6), 1800–1809.PubMed Hirsch, J.A., & Gilbert, C.D. (1991). Synapic physiology of horisontal connections in the cat’s visual cortex. Journal of Neuroscience, 11(6), 1800–1809.PubMed
Zurück zum Zitat Johannesma, P.IM. (1968). Diffusion models of the stochastic acticity of neurons. Neural Networks (pp. 116–144). Berlin: Springer. Johannesma, P.IM. (1968). Diffusion models of the stochastic acticity of neurons. Neural Networks (pp. 116–144). Berlin: Springer.
Zurück zum Zitat Kopell, N., Ermentrout, G.B., Whittington, M.A., Traub, R.D. (2000). Gamma rhythms and beta rhythms have different synchronization properties. Neurobiology, 97(4), 1867–1872. Kopell, N., Ermentrout, G.B., Whittington, M.A., Traub, R.D. (2000). Gamma rhythms and beta rhythms have different synchronization properties. Neurobiology, 97(4), 1867–1872.
Zurück zum Zitat Lubke, J., & Feldmeyer, D. (2007). Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex. Brain Structure and Function, 212(1), 3–17.PubMedCrossRef Lubke, J., & Feldmeyer, D. (2007). Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex. Brain Structure and Function, 212(1), 3–17.PubMedCrossRef
Zurück zum Zitat Myme, C.I., Sugino, K., Turrigiano, G.G., Nelson, S.B. (2003). The NMDA-to-AMPA ratio at synapses onto layer 2/3 pyramidal neurons is conserved across prefrontal and visual cortices. Journal of Neurophysiology, 90(2), 771–779.PubMedCrossRef Myme, C.I., Sugino, K., Turrigiano, G.G., Nelson, S.B. (2003). The NMDA-to-AMPA ratio at synapses onto layer 2/3 pyramidal neurons is conserved across prefrontal and visual cortices. Journal of Neurophysiology, 90(2), 771–779.PubMedCrossRef
Zurück zum Zitat Platkiewicz, J., & Brette, R. (2011). Impact of fast sodium channel inactivation on spike threshold dynamics and synaptic integration. PLoS Computational Biology, 7, e1001129.PubMedCentralPubMedCrossRef Platkiewicz, J., & Brette, R. (2011). Impact of fast sodium channel inactivation on spike threshold dynamics and synaptic integration. PLoS Computational Biology, 7, e1001129.PubMedCentralPubMedCrossRef
Zurück zum Zitat Rattay, F. (1999). The basic mechanism for the electrical stimulation of the nervous system. Neuroscience, 89(2), 335–346.PubMedCrossRef Rattay, F. (1999). The basic mechanism for the electrical stimulation of the nervous system. Neuroscience, 89(2), 335–346.PubMedCrossRef
Zurück zum Zitat Shelley, M., McLaughlin, D., Shapley, R., Wielaard, J. (2002). States of high conductance in a large-scale model of the visual cortex. Journal of Computational Neuroscience, 13, 93–109.PubMedCrossRef Shelley, M., McLaughlin, D., Shapley, R., Wielaard, J. (2002). States of high conductance in a large-scale model of the visual cortex. Journal of Computational Neuroscience, 13, 93–109.PubMedCrossRef
Zurück zum Zitat Shriki, O., Hansel, D., Sompolinsky, H. (2003). Rate models for conductance-based cortical neuronal networks. Neural Computation, 15, 1809-1841.PubMedCrossRef Shriki, O., Hansel, D., Sompolinsky, H. (2003). Rate models for conductance-based cortical neuronal networks. Neural Computation, 15, 1809-1841.PubMedCrossRef
Zurück zum Zitat Smirnova, E., & Chizhov, A.V. (2011). Orientation hypercolumns of the visual cortex: ring model. Biofizika, 56(3), 527–533.PubMed Smirnova, E., & Chizhov, A.V. (2011). Orientation hypercolumns of the visual cortex: ring model. Biofizika, 56(3), 527–533.PubMed
Zurück zum Zitat Symes, A., & Wennekers, T. (2009). Spatiotemporal dynamics in the cortical microcircuit: a modelling study of primary visual cortex layer 2/3. Neural Networks, 22, 1079–1092.PubMedCrossRef Symes, A., & Wennekers, T. (2009). Spatiotemporal dynamics in the cortical microcircuit: a modelling study of primary visual cortex layer 2/3. Neural Networks, 22, 1079–1092.PubMedCrossRef
Zurück zum Zitat Thomson, A.M., & Lamy, C. (2007). Functional maps of neocortical local circuitry. Front Neuroscience, 1(1), 19–42.CrossRef Thomson, A.M., & Lamy, C. (2007). Functional maps of neocortical local circuitry. Front Neuroscience, 1(1), 19–42.CrossRef
Zurück zum Zitat Thomson, A.M., West, D.C., Wang, Y., Bannister, A.P. (2002). Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2–5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. Cereb Cortex, 12, 936–953.PubMedCrossRef Thomson, A.M., West, D.C., Wang, Y., Bannister, A.P. (2002). Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2–5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. Cereb Cortex, 12, 936–953.PubMedCrossRef
Zurück zum Zitat Troyer, T.W., Krukowski, A.E., Priebe, N.J., Miller, K.D. (1998). Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity. The Journal of Neuroscience, 18(15), 5908–5927.PubMed Troyer, T.W., Krukowski, A.E., Priebe, N.J., Miller, K.D. (1998). Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity. The Journal of Neuroscience, 18(15), 5908–5927.PubMed
Zurück zum Zitat Tucker, T.R., & Katz, L.C. (2003a). Spatiotemporal patterns of excitation and inhibition evoked by the horizontal network in layer 2/3 of ferret visual cortex. Journal of Neurophysiology, 89, 488–500.PubMedCrossRef Tucker, T.R., & Katz, L.C. (2003a). Spatiotemporal patterns of excitation and inhibition evoked by the horizontal network in layer 2/3 of ferret visual cortex. Journal of Neurophysiology, 89, 488–500.PubMedCrossRef
Zurück zum Zitat Tucker, T.R., & Katz, L.C. (2003b). Recruitment of local inhibitory networks by horizontal connections in layer 2/3 of Ferret visual cortex. Journal of Neurophysiology, 89, 501–512.PubMedCrossRef Tucker, T.R., & Katz, L.C. (2003b). Recruitment of local inhibitory networks by horizontal connections in layer 2/3 of Ferret visual cortex. Journal of Neurophysiology, 89, 501–512.PubMedCrossRef
Zurück zum Zitat Webster, M.A. (2004). Pattern-selective adaptation in color and form perception. In Chalupa, L.M., & Werner, J.S. (Eds.), The visual neuroscience (pp. 936–947). Massachusetts: MIT. Webster, M.A. (2004). Pattern-selective adaptation in color and form perception. In Chalupa, L.M., & Werner, J.S. (Eds.), The visual neuroscience (pp. 936–947). Massachusetts: MIT.
Zurück zum Zitat White, J.A., Chow, C.C., Ritt, J., Soto-Trevino, C., Kopell, N. (1998). Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. Journal of Computational Neuroscience, 5, 5–16.PubMedCrossRef White, J.A., Chow, C.C., Ritt, J., Soto-Trevino, C., Kopell, N. (1998). Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. Journal of Computational Neuroscience, 5, 5–16.PubMedCrossRef
Zurück zum Zitat Wolfe, J., Houweling, A.R., Brecht, M. (2010). Sparse and powerful cortical spikes. Current Opinion in Neurobiology, 20, 306–12.PubMedCrossRef Wolfe, J., Houweling, A.R., Brecht, M. (2010). Sparse and powerful cortical spikes. Current Opinion in Neurobiology, 20, 306–12.PubMedCrossRef
Zurück zum Zitat Xiang, Z., Huguenard, J.R., Prince, D.A. (1998). GABAA receptor-mediated currents in interneurons and pyramidal cells of rat visual cortex. Journal of Physiology, 506, 715–730.PubMedCentralPubMedCrossRef Xiang, Z., Huguenard, J.R., Prince, D.A. (1998). GABAA receptor-mediated currents in interneurons and pyramidal cells of rat visual cortex. Journal of Physiology, 506, 715–730.PubMedCentralPubMedCrossRef
Zurück zum Zitat Yoshimura, Y., & Callaway, E.M. (2005). Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nature Neuroscience, 8(11), 1552–1559.PubMedCrossRef Yoshimura, Y., & Callaway, E.M. (2005). Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nature Neuroscience, 8(11), 1552–1559.PubMedCrossRef
Metadaten
Titel
Conductance-based refractory density model of primary visual cortex
verfasst von
Anton V. Chizhov
Publikationsdatum
01.04.2014
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2014
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-013-0473-5

Weitere Artikel der Ausgabe 2/2014

Journal of Computational Neuroscience 2/2014 Zur Ausgabe

Premium Partner