Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2014

01.04.2014

Distribution of correlated spiking events in a population-based approach for Integrate-and-Fire networks

verfasst von: Jiwei Zhang, Katherine Newhall, Douglas Zhou, Aaditya Rangan

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Randomly connected populations of spiking neurons display a rich variety of dynamics. However, much of the current modeling and theoretical work has focused on two dynamical extremes: on one hand homogeneous dynamics characterized by weak correlations between neurons, and on the other hand total synchrony characterized by large populations firing in unison. In this paper we address the conceptual issue of how to mathematically characterize the partially synchronous “multiple firing events” (MFEs) which manifest in between these two dynamical extremes. We further develop a geometric method for obtaining the distribution of magnitudes of these MFEs by recasting the cascading firing event process as a first-passage time problem, and deriving an analytical approximation of the first passage time density valid for large neuron populations. Thus, we establish a direct link between the voltage distributions of excitatory and inhibitory neurons and the number of neurons firing in an MFE that can be easily integrated into population–based computational methods, thereby bridging the gap between homogeneous firing regimes and total synchrony.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Donsker’s theorem states that the fluctuations of an empirical CDF about its theoretical CDF converge to Gaussian random variables with zero mean and certain variance. The sequence of independent Gaussian random variables can be formulated in terms of a standard Brownian bridge, a continuous-time stochastic process on the unit interval, conditioned to begin and end at zero.
 
Literatur
Zurück zum Zitat Amari, S. (1974). A method of statistical neurodynamics. Kybernetik, 14, 201–215.PubMed Amari, S. (1974). A method of statistical neurodynamics. Kybernetik, 14, 201–215.PubMed
Zurück zum Zitat Amit, D., & Brunel, N. (1997). Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cerebral Cortex, 7, 237–252.PubMedCrossRef Amit, D., & Brunel, N. (1997). Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cerebral Cortex, 7, 237–252.PubMedCrossRef
Zurück zum Zitat Anderson, J., Carandini, M., Ferster, D. (2000). Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. Journal of Neurophysiology, 84, 909–926.PubMed Anderson, J., Carandini, M., Ferster, D. (2000). Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. Journal of Neurophysiology, 84, 909–926.PubMed
Zurück zum Zitat Battaglia, D., & Hansel, D. (2011). Synchronous chaos and broad band gamma rhythm in a minimal multi-layer model of primary visual cortex. PLoS Computational Biology, 7(10), e1002176.PubMedCentralPubMedCrossRef Battaglia, D., & Hansel, D. (2011). Synchronous chaos and broad band gamma rhythm in a minimal multi-layer model of primary visual cortex. PLoS Computational Biology, 7(10), e1002176.PubMedCentralPubMedCrossRef
Zurück zum Zitat Benayoun, M., Cowan, J.V., Drongelen, W., Wallace, E. (2010). Avalanches in a stochastic model of spiking neurons. PLoS Computational Biology, 6(7), e1002176.CrossRef Benayoun, M., Cowan, J.V., Drongelen, W., Wallace, E. (2010). Avalanches in a stochastic model of spiking neurons. PLoS Computational Biology, 6(7), e1002176.CrossRef
Zurück zum Zitat Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, J., Bower, J., Diesmann, M., Morrison, A., Goodman, P., Harris JR., F., et al. (2007). Simulation of networks of spiking neurons: a review of tools and strategies. Journal of Computational Neuroscience, 23(3), 349–398.PubMedCentralPubMedCrossRef Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, J., Bower, J., Diesmann, M., Morrison, A., Goodman, P., Harris JR., F., et al. (2007). Simulation of networks of spiking neurons: a review of tools and strategies. Journal of Computational Neuroscience, 23(3), 349–398.PubMedCentralPubMedCrossRef
Zurück zum Zitat Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8, 183–208.PubMedCrossRef Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8, 183–208.PubMedCrossRef
Zurück zum Zitat Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Computation, 11, 1621–1671.PubMedCrossRef Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Computation, 11, 1621–1671.PubMedCrossRef
Zurück zum Zitat Bruzsaki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 1926–1929.CrossRef Bruzsaki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 1926–1929.CrossRef
Zurück zum Zitat Cai, D., Rangan, A., McLaughlin, D. (2005). Architectural and synaptic mechanisms underlying coherent spontaneous activity in V1. Proceedings of the National Academy of Science, 102(16), 5868–5873.CrossRef Cai, D., Rangan, A., McLaughlin, D. (2005). Architectural and synaptic mechanisms underlying coherent spontaneous activity in V1. Proceedings of the National Academy of Science, 102(16), 5868–5873.CrossRef
Zurück zum Zitat Cai, D., Tao, L., Rangan, A. (2006). Kinetic theory for neuronal network dynamics. Communications Mathematical Sciences, 4, 97–127.CrossRef Cai, D., Tao, L., Rangan, A. (2006). Kinetic theory for neuronal network dynamics. Communications Mathematical Sciences, 4, 97–127.CrossRef
Zurück zum Zitat Cai, D., Tao, L., Shelley, M., McLaughlin, D. (2004). An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proceedings of the National Academy of Science, 101(20), 7757–7762.CrossRef Cai, D., Tao, L., Shelley, M., McLaughlin, D. (2004). An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proceedings of the National Academy of Science, 101(20), 7757–7762.CrossRef
Zurück zum Zitat Cardanobile, S., & Rotter, S. (2010). Multiplicatively interacting point processes and applications to neural modeling. Journal of Computational Neuroscience, 28, 267–284.PubMedCrossRef Cardanobile, S., & Rotter, S. (2010). Multiplicatively interacting point processes and applications to neural modeling. Journal of Computational Neuroscience, 28, 267–284.PubMedCrossRef
Zurück zum Zitat Churchland, M.M., & et al. (2010). Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nature Neuroscience, 13(3), 369–378.PubMedCentralPubMedCrossRef Churchland, M.M., & et al. (2010). Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nature Neuroscience, 13(3), 369–378.PubMedCentralPubMedCrossRef
Zurück zum Zitat DeVille, R., & Peskin, C. (2008). Synchrony and asynchrony in a fully stochastic neural network. Bulletin of Mathematical Biology, 70(6), 1608–33.PubMedCrossRef DeVille, R., & Peskin, C. (2008). Synchrony and asynchrony in a fully stochastic neural network. Bulletin of Mathematical Biology, 70(6), 1608–33.PubMedCrossRef
Zurück zum Zitat DeWeese, M., & Zador, A. (2006). Non-gaussian membrane potential dynamics imply sparse, synchronous activity in auditory cortex. Journal of Neuroscience, 26(47), 12,206–12,218.CrossRef DeWeese, M., & Zador, A. (2006). Non-gaussian membrane potential dynamics imply sparse, synchronous activity in auditory cortex. Journal of Neuroscience, 26(47), 12,206–12,218.CrossRef
Zurück zum Zitat Donsker, M. (1952). Justification and extension of Doobs heuristic approach to the Kolmogorov-Smirnov theorems. Annals of Mathematical Statistics, 23(2), 277–281.CrossRef Donsker, M. (1952). Justification and extension of Doobs heuristic approach to the Kolmogorov-Smirnov theorems. Annals of Mathematical Statistics, 23(2), 277–281.CrossRef
Zurück zum Zitat Durbin, J. (1985). The first passage density of a continuous Gaussian process to a general boundary. Journal of Applied Probability, 22, 99–122.CrossRef Durbin, J. (1985). The first passage density of a continuous Gaussian process to a general boundary. Journal of Applied Probability, 22, 99–122.CrossRef
Zurück zum Zitat Durbin, J., & Williams, D. (1992). The first passage density of the brownian process to a curved boundary. Journal of Applied Probability, 29, 291–304.CrossRef Durbin, J., & Williams, D. (1992). The first passage density of the brownian process to a curved boundary. Journal of Applied Probability, 29, 291–304.CrossRef
Zurück zum Zitat Eggert, J., & Hemmen, J. (2001). Modeling neuronal assemblies: theory and implementation. Neural Computation, 13, 1923–1974.PubMedCrossRef Eggert, J., & Hemmen, J. (2001). Modeling neuronal assemblies: theory and implementation. Neural Computation, 13, 1923–1974.PubMedCrossRef
Zurück zum Zitat Fusi, S., & Mattia, M. (1999). Collective behavior of networks with linear integrate and fire neurons. Neural Computation, 11, 633–652.PubMedCrossRef Fusi, S., & Mattia, M. (1999). Collective behavior of networks with linear integrate and fire neurons. Neural Computation, 11, 633–652.PubMedCrossRef
Zurück zum Zitat Gerstner, W. (1995). Time structure of the activity in neural network models. Physical Review E, 51, 738–758.CrossRef Gerstner, W. (1995). Time structure of the activity in neural network models. Physical Review E, 51, 738–758.CrossRef
Zurück zum Zitat Gerstner, W. (2000). Population dynamics of spiking neurons: fast transients, asynchronous states and locking. Neural Computation, 12, 43–89.PubMedCrossRef Gerstner, W. (2000). Population dynamics of spiking neurons: fast transients, asynchronous states and locking. Neural Computation, 12, 43–89.PubMedCrossRef
Zurück zum Zitat Hansel, D., & Sompolinsky, H. (1996). Chaos and synchrony in a model of a hypercolumn in visual cortex. Journal of Computational Neuroscience, 3, 7–34.PubMedCrossRef Hansel, D., & Sompolinsky, H. (1996). Chaos and synchrony in a model of a hypercolumn in visual cortex. Journal of Computational Neuroscience, 3, 7–34.PubMedCrossRef
Zurück zum Zitat Kriener, B., Tetzlaff, T., Aertsen, A., Diesmann, M., Rotter, S. (2008). Correlations and population dynamics in cortical networks. Neural Computation, 20, 2185–2226.PubMedCrossRef Kriener, B., Tetzlaff, T., Aertsen, A., Diesmann, M., Rotter, S. (2008). Correlations and population dynamics in cortical networks. Neural Computation, 20, 2185–2226.PubMedCrossRef
Zurück zum Zitat Krukowski, A., & Miller, K. (2000). Thalamocortical NMDA conductances and intracortical inhibition can explain cortical temporal tuning. Nature Neuroscience, 4, 424–430.CrossRef Krukowski, A., & Miller, K. (2000). Thalamocortical NMDA conductances and intracortical inhibition can explain cortical temporal tuning. Nature Neuroscience, 4, 424–430.CrossRef
Zurück zum Zitat Lampl, I., Reichova, I., Ferster, D. (1999). Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron, 22, 361–374.PubMedCrossRef Lampl, I., Reichova, I., Ferster, D. (1999). Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron, 22, 361–374.PubMedCrossRef
Zurück zum Zitat Lei, H., Riffell, J., Gage, S., Hildebrand, J. (2009). Contrast enhancement of stimulus intermittency in a primary olfactory network and its behavioral significance. Journal of Biology, 8, 21.PubMedCentralPubMedCrossRef Lei, H., Riffell, J., Gage, S., Hildebrand, J. (2009). Contrast enhancement of stimulus intermittency in a primary olfactory network and its behavioral significance. Journal of Biology, 8, 21.PubMedCentralPubMedCrossRef
Zurück zum Zitat Mazzoni, A., Broccard, F., Garcia-Perez, E., Bonifazi, P., Ruaro, M., Torre, V. (2007). On the dynamics of the spontaneous activity in neuronal networks. PLoS One, 2(5), e439.PubMedCentralPubMedCrossRef Mazzoni, A., Broccard, F., Garcia-Perez, E., Bonifazi, P., Ruaro, M., Torre, V. (2007). On the dynamics of the spontaneous activity in neuronal networks. PLoS One, 2(5), e439.PubMedCentralPubMedCrossRef
Zurück zum Zitat Murthy, A., & Humphrey, A. (1999). Inhibitory contributions to spatiotemporal receptive-field structure and direction selectivity in simple cells of cat area 17. Journal of Neurophysiology, 81, 1212–1224.PubMed Murthy, A., & Humphrey, A. (1999). Inhibitory contributions to spatiotemporal receptive-field structure and direction selectivity in simple cells of cat area 17. Journal of Neurophysiology, 81, 1212–1224.PubMed
Zurück zum Zitat Newhall, K., Kovačič, G., Kramer, P., Cai, D. (2010). Cascade-induced synchrony in stochastically driven neuronal networks. Physical Review E, 82, 041903.CrossRef Newhall, K., Kovačič, G., Kramer, P., Cai, D. (2010). Cascade-induced synchrony in stochastically driven neuronal networks. Physical Review E, 82, 041903.CrossRef
Zurück zum Zitat Nykamp, D., & Tranchina, D. (2000). A population density approach that facilitates large scale modeling of neural networks: analysis and application to orientation tuning. Journal of Computational Neuroscience, 8, 19–50.PubMedCrossRef Nykamp, D., & Tranchina, D. (2000). A population density approach that facilitates large scale modeling of neural networks: analysis and application to orientation tuning. Journal of Computational Neuroscience, 8, 19–50.PubMedCrossRef
Zurück zum Zitat Omurtage, A., Knight, B., Sirovich, L. (2000). On the simulation of a large population of neurons. Journal of Computational Neuroscience, 8, 51–63.CrossRef Omurtage, A., Knight, B., Sirovich, L. (2000). On the simulation of a large population of neurons. Journal of Computational Neuroscience, 8, 51–63.CrossRef
Zurück zum Zitat Petermann, T., Thiagarajan, T., Lebedev, M., Nicolelis, M., Chailvo, D., Plenz, D. (2009). Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proceedings of the National Academy of Science, 106, 15,921–15,926.CrossRef Petermann, T., Thiagarajan, T., Lebedev, M., Nicolelis, M., Chailvo, D., Plenz, D. (2009). Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proceedings of the National Academy of Science, 106, 15,921–15,926.CrossRef
Zurück zum Zitat Rangan, A., & Cai, D. (2007). Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks. Journal of Computational Neuroscience, 22(1), 81–100.PubMedCrossRef Rangan, A., & Cai, D. (2007). Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks. Journal of Computational Neuroscience, 22(1), 81–100.PubMedCrossRef
Zurück zum Zitat Rangan, A., & Young, L. (2012). A network model of V1 with collaborative activity. PNAS Submitted. Rangan, A., & Young, L. (2012). A network model of V1 with collaborative activity. PNAS Submitted.
Zurück zum Zitat Renart, A., Brunel, N., Wang, X. (2004). Mean field theory of irregularly spiking neuronal populations and working memory in recurrent cortical networks. Computational Neuroscience: A comprehensive approach. Renart, A., Brunel, N., Wang, X. (2004). Mean field theory of irregularly spiking neuronal populations and working memory in recurrent cortical networks. Computational Neuroscience: A comprehensive approach.
Zurück zum Zitat Riffell, J., Lei, H., Hildebrand, J. (2009). Neural correlates of behavior in the moth Manduca sexta in response to complex odors. Proceedings of the National Academy of Science, 106, 19,219–19,226.CrossRef Riffell, J., Lei, H., Hildebrand, J. (2009). Neural correlates of behavior in the moth Manduca sexta in response to complex odors. Proceedings of the National Academy of Science, 106, 19,219–19,226.CrossRef
Zurück zum Zitat Riffell, J., Lei, H., Christensen, T., Hildebrand, J. (2009). Characterization and coding of behaviorally significant odor mixtures. Current Biology, 19, 335–340.PubMedCentralPubMedCrossRef Riffell, J., Lei, H., Christensen, T., Hildebrand, J. (2009). Characterization and coding of behaviorally significant odor mixtures. Current Biology, 19, 335–340.PubMedCentralPubMedCrossRef
Zurück zum Zitat Samonds, J., Zhou, Z., Bernard, M., Bonds, A. (2005). Synchronous activity in cat visual cortex encodes collinear and cocircular contours. Journal of Neurophysiology, 95, 2602–2616.PubMedCrossRef Samonds, J., Zhou, Z., Bernard, M., Bonds, A. (2005). Synchronous activity in cat visual cortex encodes collinear and cocircular contours. Journal of Neurophysiology, 95, 2602–2616.PubMedCrossRef
Zurück zum Zitat Sillito, A. (1975). The contribution of inhibitory mechanisms to the receptive field properties of neurons in the striate cortex of the cat. Journal of Physiology, 250, 305–329.PubMedCentralPubMed Sillito, A. (1975). The contribution of inhibitory mechanisms to the receptive field properties of neurons in the striate cortex of the cat. Journal of Physiology, 250, 305–329.PubMedCentralPubMed
Zurück zum Zitat Singer, W. (1999). Neuronal synchrony: a versatile code for the definition of relations?Neuron, 24, 49–65.PubMedCrossRef Singer, W. (1999). Neuronal synchrony: a versatile code for the definition of relations?Neuron, 24, 49–65.PubMedCrossRef
Zurück zum Zitat Sompolinsky, H., & Shapley, R. (1997). New perspectives on the mechanisms for orientation selectivity. Current Opinion in Neurobiology, 7, 514–522.PubMedCrossRef Sompolinsky, H., & Shapley, R. (1997). New perspectives on the mechanisms for orientation selectivity. Current Opinion in Neurobiology, 7, 514–522.PubMedCrossRef
Zurück zum Zitat Sun, Y., Zhou, D., Rangan, A., Cai, D. (2010). Pseudo-Lyapunov exponents and predictability of Hodgkin-Huxley neuronal network dynamics. Journal of Computational Neuroscience, 28, 247–266.PubMedCrossRef Sun, Y., Zhou, D., Rangan, A., Cai, D. (2010). Pseudo-Lyapunov exponents and predictability of Hodgkin-Huxley neuronal network dynamics. Journal of Computational Neuroscience, 28, 247–266.PubMedCrossRef
Zurück zum Zitat Treves, A. (1993). Mean-field analysis of neuronal spike dynamics. Network, 4, 259–284.CrossRef Treves, A. (1993). Mean-field analysis of neuronal spike dynamics. Network, 4, 259–284.CrossRef
Zurück zum Zitat Wilson, H., & Cowan, D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12, 1–24.PubMedCentralPubMedCrossRef Wilson, H., & Cowan, D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12, 1–24.PubMedCentralPubMedCrossRef
Zurück zum Zitat Wilson, H., & Cowan, D. (1973). A Mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13, 55–80.PubMedCrossRef Wilson, H., & Cowan, D. (1973). A Mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13, 55–80.PubMedCrossRef
Zurück zum Zitat Worgotter, F., & Koch, C. (1991). A detailed model of the primary visual pathway in the cat comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity. Journal of Neuroscience, 11, 1959–1979.PubMed Worgotter, F., & Koch, C. (1991). A detailed model of the primary visual pathway in the cat comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity. Journal of Neuroscience, 11, 1959–1979.PubMed
Zurück zum Zitat Yu, S., Yang, H., Nakahara, H., Santos, G., Nikolic, D., Plenz, D. (2011). Higher-order interactions characterized in cortical activity. Journal of Neuroscience, 31, 17,514–17,526.CrossRef Yu, S., Yang, H., Nakahara, H., Santos, G., Nikolic, D., Plenz, D. (2011). Higher-order interactions characterized in cortical activity. Journal of Neuroscience, 31, 17,514–17,526.CrossRef
Zurück zum Zitat Zhang, J., Rangan, A., Cai, D., et al. (In preparation). A coarse-grained framework for spiking neuronal networks: between homogeneity and synchrony. Zhang, J., Rangan, A., Cai, D., et al. (In preparation). A coarse-grained framework for spiking neuronal networks: between homogeneity and synchrony.
Zurück zum Zitat Zhou, D., Sun, Y., Rangan, A., Cai, D. (2008). Network induced chaos in integrate-and-fire neuronal ensembles. Physical Review E, 80(3), 031918.CrossRef Zhou, D., Sun, Y., Rangan, A., Cai, D. (2008). Network induced chaos in integrate-and-fire neuronal ensembles. Physical Review E, 80(3), 031918.CrossRef
Metadaten
Titel
Distribution of correlated spiking events in a population-based approach for Integrate-and-Fire networks
verfasst von
Jiwei Zhang
Katherine Newhall
Douglas Zhou
Aaditya Rangan
Publikationsdatum
01.04.2014
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2014
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-013-0472-6

Weitere Artikel der Ausgabe 2/2014

Journal of Computational Neuroscience 2/2014 Zur Ausgabe