Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2014

01.04.2014

Switching mechanisms and bout times in a pair of reciprocally inhibitory neurons

verfasst von: Mainak Patel, Badal Joshi

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Within the appropriate parameter regime, a deterministic model of a pair of mutually inhibitory neurons receiving excitatory driving currents exhibits bistability—each of the two stable states corresponds to one neuron being active and the other being quiescent. The presence of noise in the driving currents results in a system that randomly switches back and forth between these two states, causing alternating bouts of spiking activity. In this work, we examine the random bout durations of the two neurons and dependence on system parameters. We find that bout durations of each neuron are exponentially distributed, with changes in system parameters altering only the mean of the distribution. Synaptic inhibition independently controls the bout durations of the two neurons—the mean bout time of a neuron is a function of efferent (or outgoing) inhibition, and is independent of afferent (or incoming) inhibition. Furthermore, we find that the mean bout time of a neuron exhibits a critical dependence on the time course (rather than amplitude) of efferent inhibition—mean bout time of a neuron grows exponentially with the time course of efferent inhibition, and the growth rate of this exponential function depends only on the excitatory driving current to that neuron (and not on any other system parameters). We discuss the relevance of our results to the regulation of sleep-wake cycling by medullary and pontine structures within the brain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Behn, C., & Booth, V. (2011). Modeling the temporal architecture of rat sleep-wake behavior. In Engineering in medicine and biology society, EMBC, 2011 annual international conference of the IEEE (pp. 4713–4716). IEEE. Behn, C., & Booth, V. (2011). Modeling the temporal architecture of rat sleep-wake behavior. In Engineering in medicine and biology society, EMBC, 2011 annual international conference of the IEEE (pp. 4713–4716). IEEE.
Zurück zum Zitat Behn, C., Kopell, N., Brown, E., Mochizuki, T., Scammell, T. (2008). Delayed orexin signaling consolidates wakefulness and sleep: physiology and modeling. Journal of Neurophysiology, 99(6), 3090–3103.CrossRef Behn, C., Kopell, N., Brown, E., Mochizuki, T., Scammell, T. (2008). Delayed orexin signaling consolidates wakefulness and sleep: physiology and modeling. Journal of Neurophysiology, 99(6), 3090–3103.CrossRef
Zurück zum Zitat Blumberg, M., Seelke, A., Lowen, S., Karlsson, K. (2005). Dynamics of sleep-wake cyclicity in developing rats. Proceedings of the National Academy of Sciences of the United States of America, 102(41), 14860.PubMedCentralPubMedCrossRef Blumberg, M., Seelke, A., Lowen, S., Karlsson, K. (2005). Dynamics of sleep-wake cyclicity in developing rats. Proceedings of the National Academy of Sciences of the United States of America, 102(41), 14860.PubMedCentralPubMedCrossRef
Zurück zum Zitat Borbély, A., Achermann, P., Trachsel, L., Tobler, I. (1989). Sleep initiation and initial sleep intensity: interactions of homeostatic and circadian mechanisms. Journal of Biological Rhythms, 4(2), 37–48.CrossRef Borbély, A., Achermann, P., Trachsel, L., Tobler, I. (1989). Sleep initiation and initial sleep intensity: interactions of homeostatic and circadian mechanisms. Journal of Biological Rhythms, 4(2), 37–48.CrossRef
Zurück zum Zitat Chu-Shore, J., Westover, M., Bianchi, M. (2010). Power law versus exponential state transition dynamics: application to sleep-wake architecture. PLoS ONE, 5(12), e14204.PubMedCentralPubMedCrossRef Chu-Shore, J., Westover, M., Bianchi, M. (2010). Power law versus exponential state transition dynamics: application to sleep-wake architecture. PLoS ONE, 5(12), e14204.PubMedCentralPubMedCrossRef
Zurück zum Zitat Elson, R., Selverston, A., Abarbanel, H., Rabinovich, M. (2001). Inhibitory synchronization of bursting in biological neurons: dependence on synaptic time constant. Journal of Neurophysiology, 88, 1166–1176. Elson, R., Selverston, A., Abarbanel, H., Rabinovich, M. (2001). Inhibitory synchronization of bursting in biological neurons: dependence on synaptic time constant. Journal of Neurophysiology, 88, 1166–1176.
Zurück zum Zitat Gall, A., Joshi, B., Best, J., Florang, V.R., Doorn, J.A., Blumberg, M. (2009). Developmental emergence of power-law wake behavior depends upon the functional integrity of the locus coeruleus. Sleep, 32(7), 920–926.PubMedCentralPubMed Gall, A., Joshi, B., Best, J., Florang, V.R., Doorn, J.A., Blumberg, M. (2009). Developmental emergence of power-law wake behavior depends upon the functional integrity of the locus coeruleus. Sleep, 32(7), 920–926.PubMedCentralPubMed
Zurück zum Zitat Halász, P., Terzano, M., Parrino, L., Bódizs, R. (2004). The nature of arousal in sleep. Journal of Sleep Research, 13(1), 1–23.PubMedCrossRef Halász, P., Terzano, M., Parrino, L., Bódizs, R. (2004). The nature of arousal in sleep. Journal of Sleep Research, 13(1), 1–23.PubMedCrossRef
Zurück zum Zitat Jalil, S., Belykh, I., Shilnikov, A. (2010). Fast reciprocal inhibition can synchronize bursting neurons. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 81, 045201.PubMedCrossRef Jalil, S., Belykh, I., Shilnikov, A. (2010). Fast reciprocal inhibition can synchronize bursting neurons. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 81, 045201.PubMedCrossRef
Zurück zum Zitat Joshi, B. (2009). A doubly stochastic poisson process model for wake-sleep cycling. Ph.D. thesis, The Ohio State University. Joshi, B. (2009). A doubly stochastic poisson process model for wake-sleep cycling. Ph.D. thesis, The Ohio State University.
Zurück zum Zitat Karlsson, K., Kreider, J., Blumberg, M. (2004). Hypothalamic contribution to sleep-wake cycle development. Neuroscience, 123(2), 575–582.PubMedCrossRef Karlsson, K., Kreider, J., Blumberg, M. (2004). Hypothalamic contribution to sleep-wake cycle development. Neuroscience, 123(2), 575–582.PubMedCrossRef
Zurück zum Zitat Kirillov, A., Myre, C., Woodward, D. (1993). Bistability, switches and working memory in a two-neuron inhibitory-feedback model. Biological Cybernetics, 68, 441–449.PubMedCrossRef Kirillov, A., Myre, C., Woodward, D. (1993). Bistability, switches and working memory in a two-neuron inhibitory-feedback model. Biological Cybernetics, 68, 441–449.PubMedCrossRef
Zurück zum Zitat Kleitman, N., & Engelmann, T. (1953). Sleep characteristics of infants. Journal of Applied Physiology, 6(5), 269–282.PubMed Kleitman, N., & Engelmann, T. (1953). Sleep characteristics of infants. Journal of Applied Physiology, 6(5), 269–282.PubMed
Zurück zum Zitat Lo, C., Nunes Amaral, L., Havlin, S., Ivanov, P., Penzel, T., Peter, J., Stanley, H. (2002). Dynamics of sleep-wake transitions during sleep. EPL (Europhysics Letters), 57, 625.CrossRef Lo, C., Nunes Amaral, L., Havlin, S., Ivanov, P., Penzel, T., Peter, J., Stanley, H. (2002). Dynamics of sleep-wake transitions during sleep. EPL (Europhysics Letters), 57, 625.CrossRef
Zurück zum Zitat Lo, C., Chou, T., Penzel, T., Scammell, T., Strecker, R., Stanley, H., Ivanov, P. (2004). Common scale-invariant patterns of sleep–wake transitions across mammalian species. Proceedings of the National Academy of Sciencesof the United States of America, 101(50), 17545.CrossRef Lo, C., Chou, T., Penzel, T., Scammell, T., Strecker, R., Stanley, H., Ivanov, P. (2004). Common scale-invariant patterns of sleep–wake transitions across mammalian species. Proceedings of the National Academy of Sciencesof the United States of America, 101(50), 17545.CrossRef
Zurück zum Zitat Lu, J., Sherman, D., Devor, M., Saper, C. (2006). A putative flip-flop switch for control of rem sleep. Nature, 441(7093), 589–594.PubMedCrossRef Lu, J., Sherman, D., Devor, M., Saper, C. (2006). A putative flip-flop switch for control of rem sleep. Nature, 441(7093), 589–594.PubMedCrossRef
Zurück zum Zitat Ostojic, S. (2011). Interspike interval distributions of spiking neurons driven by fluctuating inputs. Journal of Neurophysiology, 106(1), 361–373.PubMedCrossRef Ostojic, S. (2011). Interspike interval distributions of spiking neurons driven by fluctuating inputs. Journal of Neurophysiology, 106(1), 361–373.PubMedCrossRef
Zurück zum Zitat Phillips, A., Robinson, P., Kedziora, D., Abeysuriya, R. (2010). Mammalian sleep dynamics: how diverse features arise from a common physiological framework. PLoS Computational Biology, 6(6), e1000826.PubMedCentralPubMedCrossRef Phillips, A., Robinson, P., Kedziora, D., Abeysuriya, R. (2010). Mammalian sleep dynamics: how diverse features arise from a common physiological framework. PLoS Computational Biology, 6(6), e1000826.PubMedCentralPubMedCrossRef
Zurück zum Zitat Rempe, M., Best, J., Terman, D. (2010). A mathematical model of the sleep/wake cycle. Journal of Mathematical Biology, 60(5), 615–644.PubMedCrossRef Rempe, M., Best, J., Terman, D. (2010). A mathematical model of the sleep/wake cycle. Journal of Mathematical Biology, 60(5), 615–644.PubMedCrossRef
Zurück zum Zitat Robinson, P., Phillips, A., Fulcher, B., Puckeridge, M., Roberts, J. (2011). Quantitative modelling of sleep dynamics. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 369(1952), 3840–3854.CrossRef Robinson, P., Phillips, A., Fulcher, B., Puckeridge, M., Roberts, J. (2011). Quantitative modelling of sleep dynamics. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 369(1952), 3840–3854.CrossRef
Zurück zum Zitat Rowat, P., & Selverston, A. (1997). Oscillatory mechanisms in pairs of neurons connected with fast inhibitory synapses. Journal of Computational Neuroscience, 4, 103–127.PubMedCrossRef Rowat, P., & Selverston, A. (1997). Oscillatory mechanisms in pairs of neurons connected with fast inhibitory synapses. Journal of Computational Neuroscience, 4, 103–127.PubMedCrossRef
Zurück zum Zitat Skinner, F., Kopell, N., Marder, E. (1994). Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. Journal of Computational Neuroscience, 1, 69–87.PubMedCrossRef Skinner, F., Kopell, N., Marder, E. (1994). Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. Journal of Computational Neuroscience, 1, 69–87.PubMedCrossRef
Zurück zum Zitat Tao, L., Shelley, M., McLaughlin, D., Shapley, R. (2004). An egalitarian network model for the emergence of simple and complex cells in visual cortex. Proceedings of the National Academy of Sciences, 101, 366–371.CrossRef Tao, L., Shelley, M., McLaughlin, D., Shapley, R. (2004). An egalitarian network model for the emergence of simple and complex cells in visual cortex. Proceedings of the National Academy of Sciences, 101, 366–371.CrossRef
Zurück zum Zitat Terman, D., Kopell, N., Bose, A. (1998). Dynamics of two mutually coupled slow inhibitory neurons. Physica D, 117, 241–275.CrossRef Terman, D., Kopell, N., Bose, A. (1998). Dynamics of two mutually coupled slow inhibitory neurons. Physica D, 117, 241–275.CrossRef
Zurück zum Zitat Van Vreeswijk, C., Abbott, L., Ermentrout, G. (1994). When inhibition not excitation synchronizes neural firing. Journal of Computational Neuroscience, 1, 313–321.PubMedCrossRef Van Vreeswijk, C., Abbott, L., Ermentrout, G. (1994). When inhibition not excitation synchronizes neural firing. Journal of Computational Neuroscience, 1, 313–321.PubMedCrossRef
Zurück zum Zitat Wang, X., & Rinzel, J. (1992). Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Computation, 4, 84–97.CrossRef Wang, X., & Rinzel, J. (1992). Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Computation, 4, 84–97.CrossRef
Metadaten
Titel
Switching mechanisms and bout times in a pair of reciprocally inhibitory neurons
verfasst von
Mainak Patel
Badal Joshi
Publikationsdatum
01.04.2014
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2014
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-013-0464-6

Weitere Artikel der Ausgabe 2/2014

Journal of Computational Neuroscience 2/2014 Zur Ausgabe