Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 1-3/2007

01-03-2007

Compression stress–strain and creep properties of the 52In–48Sn and 97In–3Ag low-temperature Pb-free solders

Authors: Paul T. Vianco, Jerome A. Rejent, Arlo F. Fossum, Michael K. Neilsen

Published in: Journal of Materials Science: Materials in Electronics | Issue 1-3/2007

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lead (Pb)-free, low melting temperature solders are required for step-soldering processes used to assemble micro-electrical mechanical system (MEMS) and optoelectronic (OE) devices. Stress–strain and creep studies, which provide solder mechanical properties for unified creep-plasticity (UCP) predictive models, were performed on the Pb-free 97In–3Ag (wt.%) and 58In–42Sn solders and counterpart Pb-bearing 80In–15Pb–5Ag and 70In–15Sn–9.6Pb–5.4Cd alloys. Stress–strain tests were performed at 4.4 × 10−5 s−1 and 8.8 × 10−4 s−1. Stress–strain and creep tests were performed at −25, 25, 75, and 100°C or 125°C. The samples were evaluated in the as-fabricated and post-annealed conditions. The In–Ag solder had yield stress values of 0.5–8.5 MPa. The values of ΔH for steady-state creep were 99 ± 14 kJ/mol and 46 ± 11 kJ/mol, indicating that bulk diffusion controlled creep in the as-fabricated samples (former) and fast-diffusion controlled creep in the annealed samples (latter). The In–Sn yield stresses were 1.0–22 MPa and were not dependent on an annealed condition. The steady-state creep ΔH values were 55 ± 11 kJ/mol and 48 ± 13 kJ/mol for the as-fabricated and annealed samples, respectively, indicating the fast-diffusion controlled creep for the two conditions. The UCP constitutive models were derived for the In–Ag solder in the as-fabricated and annealed conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Tests were preformed on Sn–Ag–Cu samples at considerably faster strain rates of up to 10−2 s−1 [16]. The static elastic moduli values had similar magnitudes.
 
Literature
1.
go back to reference T. Massalski (ed.), Binary Alloy Phase Diagrams (ASM, International, Materials Park, OH; 1986); vol. 1, p. 34 and vol. 2, p. 1401. T. Massalski (ed.), Binary Alloy Phase Diagrams (ASM, International, Materials Park, OH; 1986); vol. 1, p. 34 and vol. 2, p. 1401.
2.
go back to reference Z. Mei, J. Morris, J. Electron. Mater. 21, 401 (1992) Z. Mei, J. Morris, J. Electron. Mater. 21, 401 (1992)
3.
go back to reference J. Goldstein, J. Morris, J. Electron. Mater. 23, 477 (1994) J. Goldstein, J. Morris, J. Electron. Mater. 23, 477 (1994)
4.
go back to reference J. Hwang, R. Vargas, Solder Surface Mount Technol. 5, 38 (1990) J. Hwang, R. Vargas, Solder Surface Mount Technol. 5, 38 (1990)
5.
go back to reference J. Seyyed, Solder Surface Mount Technol. 13, 26 (1993) J. Seyyed, Solder Surface Mount Technol. 13, 26 (1993)
6.
go back to reference F. Garofalo, Fundamentals of Creep and Creep Rupture in Metals (MacMillian, New York, NY, 1965), p. 156 F. Garofalo, Fundamentals of Creep and Creep Rupture in Metals (MacMillian, New York, NY, 1965), p. 156
7.
go back to reference A. Krausz, H. Eyring, Deformation Kinetics (McGraw-Hill, New York, NY), p. 190 A. Krausz, H. Eyring, Deformation Kinetics (McGraw-Hill, New York, NY), p. 190
9.
go back to reference P. Vianco, J. Rejent, A. Kilgo, J. Electron. Mater. 32, 142 (2003) P. Vianco, J. Rejent, A. Kilgo, J. Electron. Mater. 32, 142 (2003)
10.
go back to reference P. Vianco, J. Rejent, A. Kilgo, J. Electron. Mater. 33, 1389 (2004) P. Vianco, J. Rejent, A. Kilgo, J. Electron. Mater. 33, 1389 (2004)
11.
go back to reference G. Dieter, Mechanical Metallurgy (McGraw-Hill, New York, NY, 1976), p. 75 G. Dieter, Mechanical Metallurgy (McGraw-Hill, New York, NY, 1976), p. 75
12.
go back to reference Standard Test Methods for Young’s Modulus, Tangent Modulus, and Chord Modulus, ASTM E111–82 (American Society for Testing and Materials, West Conshohocken, 1995) Standard Test Methods for Young’s Modulus, Tangent Modulus, and Chord Modulus, ASTM E111–82 (American Society for Testing and Materials, West Conshohocken, 1995)
14.
go back to reference J. Stephens, D. Frear, Metall. Mater. Trans. A 30A, 1301 (1999) J. Stephens, D. Frear, Metall. Mater. Trans. A 30A, 1301 (1999)
15.
go back to reference Solder Alloy Data–Mechanical Properties of Solders and Soldered Joints Report 656 (Inter. Tin Research Institute, Uxbridge, Middlesex, UK, 1986), pp. 12, 38 Solder Alloy Data–Mechanical Properties of Solders and Soldered Joints Report 656 (Inter. Tin Research Institute, Uxbridge, Middlesex, UK, 1986), pp. 12, 38
16.
go back to reference D. Shangguan (ed.), Lead-Free Solder Interconnect Reliability (ASM, Inter., Materials Park, 2005), p. 67 D. Shangguan (ed.), Lead-Free Solder Interconnect Reliability (ASM, Inter., Materials Park, 2005), p. 67
17.
go back to reference J. Askin, Tracer Diffusion Data (Plenum, New York, 1970) J. Askin, Tracer Diffusion Data (Plenum, New York, 1970)
18.
go back to reference Smithells Metal Reference Book, 6th edn. (Butterworth and Co. New York, 1983) pp. 13–18 Smithells Metal Reference Book, 6th edn. (Butterworth and Co. New York, 1983) pp. 13–18
19.
go back to reference P. Shewmon, Diffusion in Solids, 2nd edn. (TMS, Warrendale, 1989), p. 197 P. Shewmon, Diffusion in Solids, 2nd edn. (TMS, Warrendale, 1989), p. 197
20.
go back to reference P. Shewmon, Transformations in Metals (McGraw-Hill, New York, NY, 1969), p. 61 P. Shewmon, Transformations in Metals (McGraw-Hill, New York, NY, 1969), p. 61
21.
go back to reference J. Christian, The Theory of Transformations in Metals and Alloys: Part I–Equilibrium and General (Pergamon, Oxford, UK, 1975), p. 411 J. Christian, The Theory of Transformations in Metals and Alloys: Part I–Equilibrium and General (Pergamon, Oxford, UK, 1975), p. 411
Metadata
Title
Compression stress–strain and creep properties of the 52In–48Sn and 97In–3Ag low-temperature Pb-free solders
Authors
Paul T. Vianco
Jerome A. Rejent
Arlo F. Fossum
Michael K. Neilsen
Publication date
01-03-2007
Published in
Journal of Materials Science: Materials in Electronics / Issue 1-3/2007
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-006-9013-7

Other articles of this Issue 1-3/2007

Journal of Materials Science: Materials in Electronics 1-3/2007 Go to the issue