Skip to main content
Top
Published in: Metallurgist 9-10/2023

23-02-2023

Industrial Use of High-Strength Intermetallic Compounds Based on Aluminides and Prospects for Extending Scope of Their Application

Authors: S. G. Zhilin, V. V. Predein, O. N. Komarov

Published in: Metallurgist | Issue 9-10/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A growing demand for structural materials with a set of unique characteristics, enabling the use of products under increased mechanical loads, elevated temperatures or chemically aggressive environments, is becoming a global trend in the industry, and especially in the field of metal-intensive manufacturing. These materials include intermetallic compounds based on metal aluminides. Materials of this nature are widely used as coatings to increase the service life of the products, reduce their weight and consumption of alloying materials. However, low ductility of such materials determines their low demand for products designed for use under the impact or alternating loads. The paper analyzes advantages and dis-advantages of intermetallic materials containing aluminum, modern methods of their use, and prospects for extending their applicability for the production of new metal products.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ya. A. Saltykova, “The needs of the global economy sectors in the new structural materials amid modern innovative development,” Ekonomika i Upravleniye: Problemy, Resheniya, 6, No. 3, 9–17 (2019). Ya. A. Saltykova, “The needs of the global economy sectors in the new structural materials amid modern innovative development,” Ekonomika i Upravleniye: Problemy, Resheniya, 6, No. 3, 9–17 (2019).
2.
go back to reference A. Elshkaki, T. E. Graedel, L. Ciacci, and B. K. Reck, “Resource demand scenarios for the major metals,” Environmental Sci. & Techn., 52 (5), 2491–2497 (2018).CrossRef A. Elshkaki, T. E. Graedel, L. Ciacci, and B. K. Reck, “Resource demand scenarios for the major metals,” Environmental Sci. & Techn., 52 (5), 2491–2497 (2018).CrossRef
3.
go back to reference N. G. Zinovyeva, “Global and Russian ferrous metallurgy during pandemic,” Chernaya Metallurgiya, Bul. NTiEI, 76, No. 7, 657–664 (2020). N. G. Zinovyeva, “Global and Russian ferrous metallurgy during pandemic,” Chernaya Metallurgiya, Bul. NTiEI, 76, No. 7, 657–664 (2020).
4.
go back to reference V. V. Antipov, O. G. Senatorova, E. A. Tkachenko, and R. O. Vakhromov, “High-strength Al–Zn–Mg–Cu alloys and light Al–Li alloys,” Metal Science and Heat Treatment, 53, No. 9-10, 428–433 (2012).CrossRef V. V. Antipov, O. G. Senatorova, E. A. Tkachenko, and R. O. Vakhromov, “High-strength Al–Zn–Mg–Cu alloys and light Al–Li alloys,” Metal Science and Heat Treatment, 53, No. 9-10, 428–433 (2012).CrossRef
5.
go back to reference T. Nakamura, E. Kasai, and E. Shibata, “Present statement of metal recycling and dioxin,” in: Proc. of the 4th Intern. Conf. on Materials Engineering for Resources (Akita, Japan, Oct. 11–13, 2001), 1 (2001), pp. 127–130. T. Nakamura, E. Kasai, and E. Shibata, “Present statement of metal recycling and dioxin,” in: Proc. of the 4th Intern. Conf. on Materials Engineering for Resources (Akita, Japan, Oct. 11–13, 2001), 1 (2001), pp. 127–130.
6.
go back to reference M. Andersson, M. L. Soderman, and B. A. Sanden, “Are scarce metals in cars functionally recycled?” Waste management, No. 60, 407–416 (2017).CrossRef M. Andersson, M. L. Soderman, and B. A. Sanden, “Are scarce metals in cars functionally recycled?” Waste management, No. 60, 407–416 (2017).CrossRef
7.
go back to reference S. F. Sibley and W. C. Butterman, “Metals recycling in the United States,” Resources Conservation and Recycling, 15, No. 3-4, 259–267 (1995).CrossRef S. F. Sibley and W. C. Butterman, “Metals recycling in the United States,” Resources Conservation and Recycling, 15, No. 3-4, 259–267 (1995).CrossRef
8.
go back to reference O. N. Komarov, S. G. Zhilin, V. V. Predein, and A. V. Popov, “Mechanisms for forming iron-containing intermetallics prepared by aluminothermy and the effect of special treatment methods on their properties,” Metallurgist, 64, No. 7-8, 810–821 (2020).CrossRef O. N. Komarov, S. G. Zhilin, V. V. Predein, and A. V. Popov, “Mechanisms for forming iron-containing intermetallics prepared by aluminothermy and the effect of special treatment methods on their properties,” Metallurgist, 64, No. 7-8, 810–821 (2020).CrossRef
9.
go back to reference N. S. Stoloff, C. T. Liu, and S. C. Deevi, “Emerging applications of intermetallics,” Intermetallics, 8 (9–11), 1313–1320 (2000).CrossRef N. S. Stoloff, C. T. Liu, and S. C. Deevi, “Emerging applications of intermetallics,” Intermetallics, 8 (9–11), 1313–1320 (2000).CrossRef
10.
go back to reference E. R. Schulze Gustav, Metallphysik, Berlin, Akademie-Verlag, Berlin (1967). E. R. Schulze Gustav, Metallphysik, Berlin, Akademie-Verlag, Berlin (1967).
11.
go back to reference Yu. R. Kolobov et al., Structure and Properties of Intermetallic Materials with Nanophase Hardening [in Russian], Ye. N. Kablov and Yu. R. Kolobov (editors), MISiS, Moscow (2008). Yu. R. Kolobov et al., Structure and Properties of Intermetallic Materials with Nanophase Hardening [in Russian], Ye. N. Kablov and Yu. R. Kolobov (editors), MISiS, Moscow (2008).
12.
go back to reference I. I. Kornilov, Metallides: Structure, Properties, Application [in Russian], Collection of Articles, Nauka, Moscow (1971). I. I. Kornilov, Metallides: Structure, Properties, Application [in Russian], Collection of Articles, Nauka, Moscow (1971).
13.
go back to reference P. I. Kripyakevich, Structural Types of Intermetallic Compounds [in Russian], Nauka, Moscow (1977). P. I. Kripyakevich, Structural Types of Intermetallic Compounds [in Russian], Nauka, Moscow (1977).
14.
go back to reference W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys [in Russian], Parts 1-2, Mir, Moscow (1977). W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys [in Russian], Parts 1-2, Mir, Moscow (1977).
15.
go back to reference K. J. Smithells, Metals Reference Book [in Russian], Metallurgiya (1980). K. J. Smithells, Metals Reference Book [in Russian], Metallurgiya (1980).
16.
go back to reference B. A. Kolachev, A. A. Ilyin, and P. D. Drozdov, “Composition, structure and mechanical properties of binary intermetallic compounds,” Izv. Vuzov, Tsvetnaya Metallurgiya, No. 6, 41–52 (1997). B. A. Kolachev, A. A. Ilyin, and P. D. Drozdov, “Composition, structure and mechanical properties of binary intermetallic compounds,” Izv. Vuzov, Tsvetnaya Metallurgiya, No. 6, 41–52 (1997).
17.
go back to reference Ye. V. Chuprunov, A. F. Khokhlov, and M. A. Faddeev, Fundamentals of Crystallography [in Russian], Izd. Fiz.-Mat. Lit., Moscow (2006). Ye. V. Chuprunov, A. F. Khokhlov, and M. A. Faddeev, Fundamentals of Crystallography [in Russian], Izd. Fiz.-Mat. Lit., Moscow (2006).
18.
go back to reference S. G. Grigorenko, G. M. Grigorenko, and O. M. Zadorozhnyuk, “Titanium intermetallic compounds. Features, properties, application (Overview),” Sovremennaya Elektrometallurgiya, No. 3, 51–58 (128) (2017). S. G. Grigorenko, G. M. Grigorenko, and O. M. Zadorozhnyuk, “Titanium intermetallic compounds. Features, properties, application (Overview),” Sovremennaya Elektrometallurgiya, No. 3, 51–58 (128) (2017).
19.
go back to reference S. K. Gong, Y. Shang, J. Zhang, X. P. Guo, J. P. Lin, and X. H. Zhao, “Application and research of typical intermetallics-based high temperature structural materials in China,” Acta Metallurgica Sinica, 55, 9, 1067–1076 (2019). S. K. Gong, Y. Shang, J. Zhang, X. P. Guo, J. P. Lin, and X. H. Zhao, “Application and research of typical intermetallics-based high temperature structural materials in China,” Acta Metallurgica Sinica, 55, 9, 1067–1076 (2019).
20.
go back to reference A. B. Hu and S. Z. Cai, “Research on the novel Al-W alloy powder with high volumetric combustion enthalpy,” J. Mater. Research and Techn., JMR&T, 13, 311–320 (2021). A. B. Hu and S. Z. Cai, “Research on the novel Al-W alloy powder with high volumetric combustion enthalpy,” J. Mater. Research and Techn., JMR&T, 13, 311–320 (2021).
21.
go back to reference A. Smiglewicz, M. Jablonska, K. Rodak, and A. Tomaszewska, “Study of the structure and thermal properties of intermetallics from Fe–Al system,” Acta Physica Polonica, 130 (4), 1004–1006 (2016).CrossRef A. Smiglewicz, M. Jablonska, K. Rodak, and A. Tomaszewska, “Study of the structure and thermal properties of intermetallics from Fe–Al system,” Acta Physica Polonica, 130 (4), 1004–1006 (2016).CrossRef
22.
go back to reference E. A. Naumova, “Use of calcium in alloys: from modifying to alloying,” Russian J. Non-Ferrous Metals, 59, No. 3, 284–298 (2018).CrossRef E. A. Naumova, “Use of calcium in alloys: from modifying to alloying,” Russian J. Non-Ferrous Metals, 59, No. 3, 284–298 (2018).CrossRef
23.
go back to reference J. L. Du, B. Wen, R. Melnik, and Y. Kawazoe, “Cluster characteristics and physical properties of binary Al–Zr intermetallic compounds from first principles studies,” Computational Mater. Sci., 103, 170–178 (2015).CrossRef J. L. Du, B. Wen, R. Melnik, and Y. Kawazoe, “Cluster characteristics and physical properties of binary Al–Zr intermetallic compounds from first principles studies,” Computational Mater. Sci., 103, 170–178 (2015).CrossRef
24.
go back to reference S. N. Khimukhin, V. B. Deev, E. Kh. Ri, and E. D. Kim, “High temperature synthesis of nickel aluminide alloys with tungsten carbide,” Non-Ferrous Metals, No. 1, 31–34 (2020).CrossRef S. N. Khimukhin, V. B. Deev, E. Kh. Ri, and E. D. Kim, “High temperature synthesis of nickel aluminide alloys with tungsten carbide,” Non-Ferrous Metals, No. 1, 31–34 (2020).CrossRef
25.
go back to reference A. M. Shul’pekov, R. M. Gabbasov, and O. K. Lepakova, “Combustion in layered Ni plus Al and Ti plus Al plus C powdered mixtures,” Russian J. Non-Ferrous Metals, 62, 5, 580–584 (2021). A. M. Shul’pekov, R. M. Gabbasov, and O. K. Lepakova, “Combustion in layered Ni plus Al and Ti plus Al plus C powdered mixtures,” Russian J. Non-Ferrous Metals, 62, 5, 580–584 (2021).
26.
go back to reference A. N. Khan and A. Usman, “Effect of silver addition in gamma titanium aluminide,” J. Alloys and Compounds, 491 (1-2), 209–212 (2010).CrossRef A. N. Khan and A. Usman, “Effect of silver addition in gamma titanium aluminide,” J. Alloys and Compounds, 491 (1-2), 209–212 (2010).CrossRef
27.
go back to reference M. F. Rosle, S. Abdullah, and Z. Kornain, “Surface topographical characterization of gold aluminide compound for thermosonic ball bonding,” J. Electronic Packaging, 132 (4), 041014 (2010).CrossRef M. F. Rosle, S. Abdullah, and Z. Kornain, “Surface topographical characterization of gold aluminide compound for thermosonic ball bonding,” J. Electronic Packaging, 132 (4), 041014 (2010).CrossRef
28.
go back to reference M. A. Gonzalez, D. I. Martinez, C. Saucedo, I. Guzman, and J. C. Diaz, “Characterization of the microstructural degradation of platinum modified aluminide coating,” Structural and Chemical Characterization of Metals, Alloys and Compounds, 755, 29 (2013). M. A. Gonzalez, D. I. Martinez, C. Saucedo, I. Guzman, and J. C. Diaz, “Characterization of the microstructural degradation of platinum modified aluminide coating,” Structural and Chemical Characterization of Metals, Alloys and Compounds, 755, 29 (2013).
29.
go back to reference C. M. Ward-Close, R. Minor, and P. J. Doorbar, “Intermetallic-matrix composites,” Intermetallics, 4 (3), 217–229 (1996).CrossRef C. M. Ward-Close, R. Minor, and P. J. Doorbar, “Intermetallic-matrix composites,” Intermetallics, 4 (3), 217–229 (1996).CrossRef
30.
go back to reference A. I. Kovtunov and T. V. Chermashentseva, “Study of the performance properties of fused alloys based on the iron-aluminum system,” Voprosy Materialovedeniya, No. 3, 91–96 (2012). A. I. Kovtunov and T. V. Chermashentseva, “Study of the performance properties of fused alloys based on the iron-aluminum system,” Voprosy Materialovedeniya, No. 3, 91–96 (2012).
31.
go back to reference P. Q. La, X. F. Lu, Y. Yang, Y. P. Wei, Y. Zhao, and C. J. Cheng, “Effect of Mo on microstructure and mechanical properties of bulk nanocrystalline Fe3Al materials prepared by aluminothermic reaction,” Mater. Scie. and Techn., 27, 1303–1308 (2011).CrossRef P. Q. La, X. F. Lu, Y. Yang, Y. P. Wei, Y. Zhao, and C. J. Cheng, “Effect of Mo on microstructure and mechanical properties of bulk nanocrystalline Fe3Al materials prepared by aluminothermic reaction,” Mater. Scie. and Techn., 27, 1303–1308 (2011).CrossRef
32.
go back to reference A. M. Krivtsov and E. A. Podol’skaya, “Modeling of elastic properties of crystals with hexagonal close-packed lattice,” Mechanics of Solids, 45, 3, 370–378 (2010). A. M. Krivtsov and E. A. Podol’skaya, “Modeling of elastic properties of crystals with hexagonal close-packed lattice,” Mechanics of Solids, 45, 3, 370–378 (2010).
33.
go back to reference I. A. Baburin and V. A. Blatov, “Hierarchical crystal-chemical analysis of binary intermetallic compounds,” Russian J. Inorganic Chemistry, 52, 10, 1577–1585 (2007).CrossRef I. A. Baburin and V. A. Blatov, “Hierarchical crystal-chemical analysis of binary intermetallic compounds,” Russian J. Inorganic Chemistry, 52, 10, 1577–1585 (2007).CrossRef
34.
go back to reference D. Goldberg, M. Demura, and T. Hirano, “High temperature yield strength of binary stoichiometric and Al-rich Ni3Al single crystals,” in: Proc. of the 2nd Intern. Symp. on Structural Intermetallics (Pennsylvania, USA) (1997), pp. 749–758. D. Goldberg, M. Demura, and T. Hirano, “High temperature yield strength of binary stoichiometric and Al-rich Ni3Al single crystals,” in: Proc. of the 2nd Intern. Symp. on Structural Intermetallics (Pennsylvania, USA) (1997), pp. 749–758.
35.
go back to reference T. Benameur and A. R. Yavari, “Disordering and amorphization of L12-type alloys by mechanical attrition,” J. Mater. Research, 7 (11), 2971–2977 (1992).CrossRef T. Benameur and A. R. Yavari, “Disordering and amorphization of L12-type alloys by mechanical attrition,” J. Mater. Research, 7 (11), 2971–2977 (1992).CrossRef
36.
go back to reference M. A. Baranov, E. V. Chernyh, E. A. Dubov, et al., “Energetical profile of the shear in the alloys with the superstructure D019 ,” Polzunov Bulletin, Article No. 2, 69–72 (2002). M. A. Baranov, E. V. Chernyh, E. A. Dubov, et al., “Energetical profile of the shear in the alloys with the superstructure D019 ,” Polzunov Bulletin, Article No. 2, 69–72 (2002).
37.
go back to reference N. V. Kazantseva, B. A. Greenberg, A. A. Popov, and E. V. Shorokhov, “Phase transformations in Ni3Al, Ti3Al and Ti2Al –Nb intermetallics under shock-wave loading,” J. Phys. IV France, 110, 923-928 (2003).CrossRef N. V. Kazantseva, B. A. Greenberg, A. A. Popov, and E. V. Shorokhov, “Phase transformations in Ni3Al, Ti3Al and Ti2Al –Nb intermetallics under shock-wave loading,” J. Phys. IV France, 110, 923-928 (2003).CrossRef
38.
go back to reference B. A. Greenberg, N. V. Kazantseva, A. E. Volkov, and Yu. N. Akshentsev, “Influence of the crystallization conditions on the microstructure and mechanical properties of TiAl- and Ti3Al-based alloys,” in: Proc. Intern. Conf. “Continuous Casting of Non-Ferrous Metals,” Wiley-VCH Verlag (Weinheim. Germany) (2005), pp. 265–270. B. A. Greenberg, N. V. Kazantseva, A. E. Volkov, and Yu. N. Akshentsev, “Influence of the crystallization conditions on the microstructure and mechanical properties of TiAl- and Ti3Al-based alloys,” in: Proc. Intern. Conf. “Continuous Casting of Non-Ferrous Metals,” Wiley-VCH Verlag (Weinheim. Germany) (2005), pp. 265–270.
39.
go back to reference T. Durejko, M. Zietala, M. Łazińska, S. Lipiński, W. Polkowski, T. Czujko, and R. A. Varin, “Structure and properties of the Fe3Altype intermetallic alloy fabricated by laser engineered net shaping (LENS),” Mater. Sci. and Eng. A-Structural Mater. Properties Microstructure and Processing, 650, 374–381 (2016). T. Durejko, M. Zietala, M. Łazińska, S. Lipiński, W. Polkowski, T. Czujko, and R. A. Varin, “Structure and properties of the Fe3Altype intermetallic alloy fabricated by laser engineered net shaping (LENS),” Mater. Sci. and Eng. A-Structural Mater. Properties Microstructure and Processing, 650, 374–381 (2016).
40.
go back to reference R. Gnanamoorthy and S. Hanada, “Microstructure and strength of binary and tantalum alloyed two-phase Nb-SS/Nb3Al base alloys,” Mater. Sci. and Eng. A-Structural Mater. Properties Microstructure and Processing, 207, No. 1, 129–134 (1996). R. Gnanamoorthy and S. Hanada, “Microstructure and strength of binary and tantalum alloyed two-phase Nb-SS/Nb3Al base alloys,” Mater. Sci. and Eng. A-Structural Mater. Properties Microstructure and Processing, 207, No. 1, 129–134 (1996).
41.
go back to reference K. Kusabiraki, Y. Yamamoto, and T. Ooka, “Effects of tin addition on microstructure and crystal-structure of TiAl-base alloys,” Tetsu-to-Hagane, 80, No. 10, 801–806 (1994).CrossRef K. Kusabiraki, Y. Yamamoto, and T. Ooka, “Effects of tin addition on microstructure and crystal-structure of TiAl-base alloys,” Tetsu-to-Hagane, 80, No. 10, 801–806 (1994).CrossRef
42.
go back to reference T. Ono, A. Chiba, X. G. Li, and S. Hanada, “High-temperature deformation mechanism of B2-type NiAl intermetallic compound deduced from stress relaxation behavior,” J. Japan Institute of Metals, 64, No. 10, 948–954 (2000).CrossRef T. Ono, A. Chiba, X. G. Li, and S. Hanada, “High-temperature deformation mechanism of B2-type NiAl intermetallic compound deduced from stress relaxation behavior,” J. Japan Institute of Metals, 64, No. 10, 948–954 (2000).CrossRef
43.
go back to reference O. Semenova, R. Krachler, and H. Ipser, “A generalized defect correlation model for B2 compounds,” Solid State Sci., 10, No. 9, 1236–1244 (2008).CrossRef O. Semenova, R. Krachler, and H. Ipser, “A generalized defect correlation model for B2 compounds,” Solid State Sci., 10, No. 9, 1236–1244 (2008).CrossRef
44.
go back to reference G. S. Burkhanov and N. N. Kiseleva, “Prediction of intermetallic compounds,” Uspekhi Khimii, 78, 6, 615-634 (2009). G. S. Burkhanov and N. N. Kiseleva, “Prediction of intermetallic compounds,” Uspekhi Khimii, 78, 6, 615-634 (2009).
45.
go back to reference V. E. Zalizniak and O. A. Zolotov, “Towards a universal embedded atom method interatomic potential for pure metals,” J. Siberian Federal University Mathematics and Physics, 8, No. 2, 230–249 (2015).CrossRef V. E. Zalizniak and O. A. Zolotov, “Towards a universal embedded atom method interatomic potential for pure metals,” J. Siberian Federal University Mathematics and Physics, 8, No. 2, 230–249 (2015).CrossRef
46.
go back to reference A. V. Kartavykh, S. D. Kaloshkin, V. V. Cherdyntsev, et al., “Application of microstructured intermetallics in turbine design, Part I. Modern state and prospects,” Materialovedeniye, No. 5, 3–11 (2012). A. V. Kartavykh, S. D. Kaloshkin, V. V. Cherdyntsev, et al., “Application of microstructured intermetallics in turbine design, Part I. Modern state and prospects,” Materialovedeniye, No. 5, 3–11 (2012).
47.
go back to reference P. Novak, L. Jaworska, and M. Cabibbo, “Intermetallics as innovative CRM-free materials,” E-MRS Fall Symp. I on Solutions for Critical Raw Materials under Extreme Conditions, IOP Conf. Series: Mater. Sci. and Eng., 329, Article No. 012013 (2018). P. Novak, L. Jaworska, and M. Cabibbo, “Intermetallics as innovative CRM-free materials,” E-MRS Fall Symp. I on Solutions for Critical Raw Materials under Extreme Conditions, IOP Conf. Series: Mater. Sci. and Eng., 329, Article No. 012013 (2018).
48.
go back to reference A. A. Chaplygina, P. A. Chaplygin, and M. D. Starostenkov, “Structural transformations in the NiAl alloys with deviations from the stoichiometric composition during stepwise cooling,” E-MRS Fall Symp. I on Solutions for Critical Raw Materials under Extreme Conditions, IOP Conf. Series: Mater. Sci. and Eng., 447, Article No. 012054. A. A. Chaplygina, P. A. Chaplygin, and M. D. Starostenkov, “Structural transformations in the NiAl alloys with deviations from the stoichiometric composition during stepwise cooling,” E-MRS Fall Symp. I on Solutions for Critical Raw Materials under Extreme Conditions, IOP Conf. Series: Mater. Sci. and Eng., 447, Article No. 012054.
49.
go back to reference D. J. Goda, N. L. Richards, and M. C. Chaturvedi, “The effect of processing variables on the structure and chemistry of Tialuminide based LMCS,” Mater. Sci. and Eng. A-Structural Materials Properties Microstructure and Processing, 334 (1-2), 280–290 (2002). D. J. Goda, N. L. Richards, and M. C. Chaturvedi, “The effect of processing variables on the structure and chemistry of Tialuminide based LMCS,” Mater. Sci. and Eng. A-Structural Materials Properties Microstructure and Processing, 334 (1-2), 280–290 (2002).
50.
go back to reference E. K. Liu, F. B. Yang, and L. K. Shi, “Effects of microalloying on grain refinement behaviors and hardness properties of wedgeshaped Al-Mg-Mn castings,” Intern. Conf. of Nonferrous Materials (ICNFM) Trans. of Nonferrous Metals Society of China, 17, 308–313 (2007). E. K. Liu, F. B. Yang, and L. K. Shi, “Effects of microalloying on grain refinement behaviors and hardness properties of wedgeshaped Al-Mg-Mn castings,” Intern. Conf. of Nonferrous Materials (ICNFM) Trans. of Nonferrous Metals Society of China, 17, 308–313 (2007).
51.
go back to reference E. V. Aryshnskii, V. Yu. Bazhin, and R. Kawalla, “Strategy of refining the structure of aluminum-magnesium alloys by complex microalloying with transition elements during casting and subsequent thermomechanical processing,” Non-Ferrous Metals, No. 1, 28–32 (2019).CrossRef E. V. Aryshnskii, V. Yu. Bazhin, and R. Kawalla, “Strategy of refining the structure of aluminum-magnesium alloys by complex microalloying with transition elements during casting and subsequent thermomechanical processing,” Non-Ferrous Metals, No. 1, 28–32 (2019).CrossRef
52.
go back to reference I. M. Andersson, J. Bentley, and A. J. Duncan, “Site-distributions of Fe alloying additions to B2-ordered NiAl,” Intermetallics, 7, No. 9, 1017–1024 (1999).CrossRef I. M. Andersson, J. Bentley, and A. J. Duncan, “Site-distributions of Fe alloying additions to B2-ordered NiAl,” Intermetallics, 7, No. 9, 1017–1024 (1999).CrossRef
53.
go back to reference A. T. Mammadov and R. K. Mehtiev, “Model and mechanism of strengthening metals with dispersed particles,” Vestnik Mashinostroyeniya, No. 5, 28–32 (2019). A. T. Mammadov and R. K. Mehtiev, “Model and mechanism of strengthening metals with dispersed particles,” Vestnik Mashinostroyeniya, No. 5, 28–32 (2019).
54.
go back to reference C. M. Ward-Close, R. Minor, P. J. Doorbar, “Intermetallic-matrix composites,” Intermetallics, 4 (3), 217–229 (1996).CrossRef C. M. Ward-Close, R. Minor, P. J. Doorbar, “Intermetallic-matrix composites,” Intermetallics, 4 (3), 217–229 (1996).CrossRef
55.
go back to reference N. A. Nochovnaya, P. V. Panin, A. S. Kochetkov, and K. A. Bokov, “Modern refractory alloys based on titanium gamma-aluminide: prospects of development and application,” Metal Sci. and Heat Treatment, 56 (7-8), 364–367 (2014).CrossRef N. A. Nochovnaya, P. V. Panin, A. S. Kochetkov, and K. A. Bokov, “Modern refractory alloys based on titanium gamma-aluminide: prospects of development and application,” Metal Sci. and Heat Treatment, 56 (7-8), 364–367 (2014).CrossRef
56.
go back to reference R. K. Gupta, B. Pant, and P. P. Sinha, “Theory and practice of gamma + alpha(2) Ti aluminide,” Trans. Indian Institute of Metals, 67, No. 2, 143–165 (2014).CrossRef R. K. Gupta, B. Pant, and P. P. Sinha, “Theory and practice of gamma + alpha(2) Ti aluminide,” Trans. Indian Institute of Metals, 67, No. 2, 143–165 (2014).CrossRef
57.
go back to reference E. Alexandrescu, A. Banu, M. Trifanescu, and A. Paraschiv, “Gamma titanium aluminides behavior at high temperature static shortterm stress,” Innovative Manufacturing Engineering Conference (IManE), Engineering Solutions and Technologies in Manufacturing, 657, 407–411 (2014). E. Alexandrescu, A. Banu, M. Trifanescu, and A. Paraschiv, “Gamma titanium aluminides behavior at high temperature static shortterm stress,” Innovative Manufacturing Engineering Conference (IManE), Engineering Solutions and Technologies in Manufacturing, 657, 407–411 (2014).
58.
go back to reference K. O. Abdulrahman, E. T. Akinlabi, R. M. Mahamood, S. Pityana, and M. Tlotleng, “Laser metal deposition of titanium aluminide composites: a review,” in: 8th Intern. Conf. on Mater. Processing and Characterization (ICMPC), Materials Today: Proceedings, 5, Issue 9 (2018), pp. 19738–19746. K. O. Abdulrahman, E. T. Akinlabi, R. M. Mahamood, S. Pityana, and M. Tlotleng, “Laser metal deposition of titanium aluminide composites: a review,” in: 8th Intern. Conf. on Mater. Processing and Characterization (ICMPC), Materials Today: Proceedings, 5, Issue 9 (2018), pp. 19738–19746.
59.
go back to reference A. Emiralioglu and R. Unal, “Additive manufacturing of gamma titanium aluminide alloys: a review,” J. Mater. Sci., 57, No. 7, 4441–4466 (2022).CrossRef A. Emiralioglu and R. Unal, “Additive manufacturing of gamma titanium aluminide alloys: a review,” J. Mater. Sci., 57, No. 7, 4441–4466 (2022).CrossRef
60.
go back to reference K. O. Abdulrahman, E. T. Akinlabi, and R. M. Mahamood, “Characteristics of laser metal deposited titanium aluminide,” Materials Research Express, 6, 4, 046504 (2019). K. O. Abdulrahman, E. T. Akinlabi, and R. M. Mahamood, “Characteristics of laser metal deposited titanium aluminide,” Materials Research Express, 6, 4, 046504 (2019).
61.
go back to reference A. Mohammad, A. M. Alahmari, and K. Moiduddin, “Effect of energy input on microstructure and mechanical properties of titanium aluminide alloy fabricated by the additive manufacturing process of electron beam melting,” Materials, 10, No. 2, 201 (2017). A. Mohammad, A. M. Alahmari, and K. Moiduddin, “Effect of energy input on microstructure and mechanical properties of titanium aluminide alloy fabricated by the additive manufacturing process of electron beam melting,” Materials, 10, No. 2, 201 (2017).
62.
go back to reference D. Kondo, H. Yasuda, T. Nakano, K. Cho, A. Ikeda, M. Ueda, and Y. Nagamachi, “The effect of HIP treatment on the mechanical properties of titanium aluminide additive manufactured by EBM,” in: 12th Intern. Conf. on Hot Isostatic Pressing (HIP’17), Hot Isostatic Pressing, 10 (2019), pp. 114–120. D. Kondo, H. Yasuda, T. Nakano, K. Cho, A. Ikeda, M. Ueda, and Y. Nagamachi, “The effect of HIP treatment on the mechanical properties of titanium aluminide additive manufactured by EBM,” in: 12th Intern. Conf. on Hot Isostatic Pressing (HIP’17), Hot Isostatic Pressing, 10 (2019), pp. 114–120.
63.
go back to reference J. B. Park, J. I. Lee, and J. H. Ryu, “Microstructure of titanium aluminide prepared by centrifugal investment casting for automotive turbocharger,” J. Ceramic Processing Research, 18 (5), 399–403 (2017). J. B. Park, J. I. Lee, and J. H. Ryu, “Microstructure of titanium aluminide prepared by centrifugal investment casting for automotive turbocharger,” J. Ceramic Processing Research, 18 (5), 399–403 (2017).
64.
go back to reference D. E. Larsen, “Status of investment cast gamma titanium aluminides in the USA,” in: 2nd Intern. Symp. on Metallurgy and Techn. of Titanium Alloys,” Mater. Sci. and Eng. A-structural Materials Properties Microstructure and Processing, 213 (1-2) (1996), pp. 128–133. D. E. Larsen, “Status of investment cast gamma titanium aluminides in the USA,” in: 2nd Intern. Symp. on Metallurgy and Techn. of Titanium Alloys,” Mater. Sci. and Eng. A-structural Materials Properties Microstructure and Processing, 213 (1-2) (1996), pp. 128–133.
65.
go back to reference J. Aguilar, U. Hecht, and A. Schievenbusch, “Qualification of an investment casting process for production of titanium aluminide components for aerospace and automotive applications,” in: 6th Intern. Conf. on Processing and Manufacturing of Advanced Materials (Thermec 2009), Mater. Sci. Forum, 638-642 (2010), pp. 1275–1280. J. Aguilar, U. Hecht, and A. Schievenbusch, “Qualification of an investment casting process for production of titanium aluminide components for aerospace and automotive applications,” in: 6th Intern. Conf. on Processing and Manufacturing of Advanced Materials (Thermec 2009), Mater. Sci. Forum, 638-642 (2010), pp. 1275–1280.
66.
go back to reference N. T. Mathew and L. Vijayaraghavan, “High-throughput dry drilling of titanium aluminide,” Materials and Manufacturing Processes, 32 (2), 199–208 (2017).CrossRef N. T. Mathew and L. Vijayaraghavan, “High-throughput dry drilling of titanium aluminide,” Materials and Manufacturing Processes, 32 (2), 199–208 (2017).CrossRef
67.
go back to reference N. T. Mathew and L. Vijayaraghavan, “Drilling of titanium aluminide at different aspect ratio under dry and wet conditions,” J. Manufacturing Processes, 24, 256–269 (2016).CrossRef N. T. Mathew and L. Vijayaraghavan, “Drilling of titanium aluminide at different aspect ratio under dry and wet conditions,” J. Manufacturing Processes, 24, 256–269 (2016).CrossRef
68.
go back to reference M. Trifanescu, A. Banu, A. ViÚan, N. Ionescu, A. Paraschiv, and A. Savin, “Study on processing of titanium aluminide alloy using electrical discharge machining,” Innovative Manufacturing Eng. Conf. (IManE), Eng. Solutions and Techn. in Manufacturing, 657, 311–315 (2014). M. Trifanescu, A. Banu, A. ViÚan, N. Ionescu, A. Paraschiv, and A. Savin, “Study on processing of titanium aluminide alloy using electrical discharge machining,” Innovative Manufacturing Eng. Conf. (IManE), Eng. Solutions and Techn. in Manufacturing, 657, 311–315 (2014).
69.
go back to reference M. C. Kong, D. Axinte, and W. Voice, “Aspects of material removal mechanism in plain waterjet milling on gamma titanium aluminide,” J. Mater. Processing Techn., 210, No. 3, 573–584 (2010).CrossRef M. C. Kong, D. Axinte, and W. Voice, “Aspects of material removal mechanism in plain waterjet milling on gamma titanium aluminide,” J. Mater. Processing Techn., 210, No. 3, 573–584 (2010).CrossRef
70.
go back to reference S. N. Khimukhin, V. B. Deev, E. K. Ri, and E. D. Kim, “High temperature synthesis of nickel aluminide alloys with tungsten carbide,” Non-Ferrous Metals, 1, 31–34 (2020).CrossRef S. N. Khimukhin, V. B. Deev, E. K. Ri, and E. D. Kim, “High temperature synthesis of nickel aluminide alloys with tungsten carbide,” Non-Ferrous Metals, 1, 31–34 (2020).CrossRef
71.
go back to reference M. Rosefort, M. Fehlbier, and A. Buhrig-Polaczek, “NiAl – material for the application in gas turbines,” Zeitschrift fur Metallkunde, 95, 12, 1066-1073 (2004). M. Rosefort, M. Fehlbier, and A. Buhrig-Polaczek, “NiAl – material for the application in gas turbines,” Zeitschrift fur Metallkunde, 95, 12, 1066-1073 (2004).
72.
go back to reference A. Albiter, E. Bedolla, and R. Perez, “Microstructure characterization of the NiAl intermetallic compound with Fe, Ga and Mo additions obtained by mechanical alloying,” Mater. Sci. and Eng. A-structural Mater. Properties Microstructure and Processing, 328 (1-2), 80–86 (2002). A. Albiter, E. Bedolla, and R. Perez, “Microstructure characterization of the NiAl intermetallic compound with Fe, Ga and Mo additions obtained by mechanical alloying,” Mater. Sci. and Eng. A-structural Mater. Properties Microstructure and Processing, 328 (1-2), 80–86 (2002).
73.
go back to reference H. C. Hsu and W. H. Tuan, “Thermal characteristics of a two-phase composite,” in: 5th Intern. Conf. on Characterization and Control of Interfaces for High Quality Advanced Materials (ICCCI), Advanced Powder Technology, 27, 3 (2016), pp. 929–934. H. C. Hsu and W. H. Tuan, “Thermal characteristics of a two-phase composite,” in: 5th Intern. Conf. on Characterization and Control of Interfaces for High Quality Advanced Materials (ICCCI), Advanced Powder Technology, 27, 3 (2016), pp. 929–934.
74.
go back to reference T. Lu, D. Z. Yao, and C. G. Zhou, “Low-temperature formation of aluminide coatings on Ni-base superalloys by pack cementation process,” Chinese J. Aeronautics, 23, No. 3, 381–385 (2010).CrossRef T. Lu, D. Z. Yao, and C. G. Zhou, “Low-temperature formation of aluminide coatings on Ni-base superalloys by pack cementation process,” Chinese J. Aeronautics, 23, No. 3, 381–385 (2010).CrossRef
75.
go back to reference K. H. Lee, J. T. Lukowski, and C. L. White, “Effects of gaseous hydrogen and water vapor pressure on environmental embrittlement of Ni3Al,” Intermetallics, 5, No. 6, 483–490 (1997).CrossRef K. H. Lee, J. T. Lukowski, and C. L. White, “Effects of gaseous hydrogen and water vapor pressure on environmental embrittlement of Ni3Al,” Intermetallics, 5, No. 6, 483–490 (1997).CrossRef
76.
go back to reference P. Perez, P. Gonzalez, G. Garcés, G. Caruana, and P. Adeva, “Microstructure and mechanical properties of a rapidly solidified Ni3Al-Cr alloy after thermal treatments,” J. Alloys and Compounds, 302, No. 1-2, 137–145 (2000).CrossRef P. Perez, P. Gonzalez, G. Garcés, G. Caruana, and P. Adeva, “Microstructure and mechanical properties of a rapidly solidified Ni3Al-Cr alloy after thermal treatments,” J. Alloys and Compounds, 302, No. 1-2, 137–145 (2000).CrossRef
77.
go back to reference A. I. Kovalev, R. A. Barskaya, and D. L. Wainstein, “Effect of alloying on electronic structure, strength and ductility characteristics of nickel aluminide,” in: 7th Intern. Conf. on Nanometer-Scale Science and Technology (NANO-7), 21st European Conf. on Surface Science (ECOSS-21), Surface Sci., 532 (2003), pp. 35–40. A. I. Kovalev, R. A. Barskaya, and D. L. Wainstein, “Effect of alloying on electronic structure, strength and ductility characteristics of nickel aluminide,” in: 7th Intern. Conf. on Nanometer-Scale Science and Technology (NANO-7), 21st European Conf. on Surface Science (ECOSS-21), Surface Sci., 532 (2003), pp. 35–40.
78.
go back to reference M. Awotunde, A. Adegbenjo, O. Ayodele, M. Okoro, M. Shongwe, and P. Olubambi, “Influence of carbon nanotubes addition on the mechanical properties of nickel aluminide – NiAl,” in: 2nd Intern. Conf. on Recent Advances in Materials and Manufacturing Techn. (IMMT), Mater. Today: Proceedings, 28, Part 2 (2020), pp. 615–619. M. Awotunde, A. Adegbenjo, O. Ayodele, M. Okoro, M. Shongwe, and P. Olubambi, “Influence of carbon nanotubes addition on the mechanical properties of nickel aluminide – NiAl,” in: 2nd Intern. Conf. on Recent Advances in Materials and Manufacturing Techn. (IMMT), Mater. Today: Proceedings, 28, Part 2 (2020), pp. 615–619.
79.
go back to reference L. Shevtsova, V. Mali, A. Bataev, A. Anisimov, and D. Dudina, “Microstructure and mechanical properties of materials obtained by spark plasma sintering of Ni3Al–Ni powder mixtures,” Mater. Sci. and Eng. A-structural Mater. Properties Microstructure and Processing, 773, 138882 (2020). L. Shevtsova, V. Mali, A. Bataev, A. Anisimov, and D. Dudina, “Microstructure and mechanical properties of materials obtained by spark plasma sintering of Ni3Al–Ni powder mixtures,” Mater. Sci. and Eng. A-structural Mater. Properties Microstructure and Processing, 773, 138882 (2020).
80.
go back to reference S. Talas and G. Oruc, “Characterization of TiC and TiB2 reinforced nickel aluminide (NiAl) based metal matrix composites cast by in situ vacuum suction arc melting,” Vacuum, 172 (2020). S. Talas and G. Oruc, “Characterization of TiC and TiB2 reinforced nickel aluminide (NiAl) based metal matrix composites cast by in situ vacuum suction arc melting,” Vacuum, 172 (2020).
81.
go back to reference O. Yu. Sheshukov, “Use of ferroaluminum to deoxidize steel,” Stal’, No. 9, 26–27 (2004). O. Yu. Sheshukov, “Use of ferroaluminum to deoxidize steel,” Stal’, No. 9, 26–27 (2004).
82.
go back to reference O. Yu. Sheshukov, V. I. Zhuchkov, I. Yu. Burlak, L. I. Leontyev, and L. A. Marshuk, Method of Smelting Ferroaluminum, RF Patent No. 2281343, IPC C22C 33/04, Appl. No. 2004133585, filed Nov. 17, 2004; publ. Aug. 10, 2006; Bul. 22. O. Yu. Sheshukov, V. I. Zhuchkov, I. Yu. Burlak, L. I. Leontyev, and L. A. Marshuk, Method of Smelting Ferroaluminum, RF Patent No. 2281343, IPC C22C 33/04, Appl. No. 2004133585, filed Nov. 17, 2004; publ. Aug. 10, 2006; Bul. 22.
83.
go back to reference V. G. Shmorgun, O. V. Slautin, D. V. Pronichev, V. N. Arisova, and V. P. Kulevich, “Obtaining an iron aluminide coating on steel surface,” Izv. Volgograd Gos. Tekhn. Univ., No. 6 (201), 13–16 (2017). V. G. Shmorgun, O. V. Slautin, D. V. Pronichev, V. N. Arisova, and V. P. Kulevich, “Obtaining an iron aluminide coating on steel surface,” Izv. Volgograd Gos. Tekhn. Univ., No. 6 (201), 13–16 (2017).
84.
go back to reference R. Subramanian, C. G. McKamey, and P. A. Menchhofer, “Iron aluminide Al2O3 composites by in situ displacement reactions: processing and mechanical properties,” Mater. Sci. and Eng. A-structural Mater. Properties Microstructure and Processing, 254 (1-2), 119–128 (1998). R. Subramanian, C. G. McKamey, and P. A. Menchhofer, “Iron aluminide Al2O3 composites by in situ displacement reactions: processing and mechanical properties,” Mater. Sci. and Eng. A-structural Mater. Properties Microstructure and Processing, 254 (1-2), 119–128 (1998).
85.
go back to reference B. W. Zhou, Y. G. Yi, H. Xu, L. G. Meng, B. Ya, and X. G. Zhang, “Study on facile fabrication method and performance of ironbased amorphous alloy/Al micro-laminated composites,” J. Alloys and Compounds, 847, Article No. 156565 (2020). B. W. Zhou, Y. G. Yi, H. Xu, L. G. Meng, B. Ya, and X. G. Zhang, “Study on facile fabrication method and performance of ironbased amorphous alloy/Al micro-laminated composites,” J. Alloys and Compounds, 847, Article No. 156565 (2020).
86.
go back to reference R. H. Wu, X. M. Liu, M. Li, and J. Chen, “Investigations on deformation mechanism of double-sided incremental sheet forming with synchronous thermomechanical steel-aluminum alloy bonding,” J. Mater. Processing Techn., 294, Article No. 117147 (2021). R. H. Wu, X. M. Liu, M. Li, and J. Chen, “Investigations on deformation mechanism of double-sided incremental sheet forming with synchronous thermomechanical steel-aluminum alloy bonding,” J. Mater. Processing Techn., 294, Article No. 117147 (2021).
87.
go back to reference K. Park, D. Kim, K. Kim, S. Cho, K. Takagi, and H. Kwon, “Semisolid state sintering behavior of aluminum-stainless steel 316L composite materials by powder metallurgy,” Materials, 12, No. 9, Article No. 1473 (2019). K. Park, D. Kim, K. Kim, S. Cho, K. Takagi, and H. Kwon, “Semisolid state sintering behavior of aluminum-stainless steel 316L composite materials by powder metallurgy,” Materials, 12, No. 9, Article No. 1473 (2019).
88.
go back to reference K. Park, D. Kim, J. Park, S. Cho, M. Takamichi, and H. Kwon, “Intermetallic compounds in Al-SUS316L composites,” Advanced Eng. Mater., 20, No. 10, Article No. 1800312 (2018). K. Park, D. Kim, J. Park, S. Cho, M. Takamichi, and H. Kwon, “Intermetallic compounds in Al-SUS316L composites,” Advanced Eng. Mater., 20, No. 10, Article No. 1800312 (2018).
89.
go back to reference N. Hu, L. H. Xue, J. Gu, H. P. Li, and Y. W. Yan, “Optimization of grading on microstructure and mechanical properties of Al13Fe4 /Al composites in situ synthesized by mechanical alloying and spark plasma sintering,” Acta Metallurgica Sinica, 51, 2, 216–222 (2015). N. Hu, L. H. Xue, J. Gu, H. P. Li, and Y. W. Yan, “Optimization of grading on microstructure and mechanical properties of Al13Fe4 /Al composites in situ synthesized by mechanical alloying and spark plasma sintering,” Acta Metallurgica Sinica, 51, 2, 216–222 (2015).
90.
go back to reference K. Karczewski, W. J. Stepniowski, M. Chojnacki, and S. Jozwiak, “Crystalline oxalic acid aided FeAl intermetallic alloy sintering. Fabrication of intermetallic foam with porosity above 45%,” Materials Letters, 164, 32–34 (2016).CrossRef K. Karczewski, W. J. Stepniowski, M. Chojnacki, and S. Jozwiak, “Crystalline oxalic acid aided FeAl intermetallic alloy sintering. Fabrication of intermetallic foam with porosity above 45%,” Materials Letters, 164, 32–34 (2016).CrossRef
91.
go back to reference D. Arthur Jebastine Sunderraj, K. Arun Vasantha Geethan, and D. Ananthapadmanaban, “SEM and EDAX Evaluation of Al–Fe Alloy,” Int. J. Eng. and Advanced Techn. (IJEAT), 9, No. 1, 2651–2654 (2019). D. Arthur Jebastine Sunderraj, K. Arun Vasantha Geethan, and D. Ananthapadmanaban, “SEM and EDAX Evaluation of Al–Fe Alloy,” Int. J. Eng. and Advanced Techn. (IJEAT), 9, No. 1, 2651–2654 (2019).
92.
go back to reference P. Mai, G. Liu, Y. Chen, J. Li, and S. He, “Preparation of Fe3Al alloy by combustion synthesis melt-casting under ultra-high gravity,” Mater. and Manufacturing Processes, 27 (5), 486–489 (2012).CrossRef P. Mai, G. Liu, Y. Chen, J. Li, and S. He, “Preparation of Fe3Al alloy by combustion synthesis melt-casting under ultra-high gravity,” Mater. and Manufacturing Processes, 27 (5), 486–489 (2012).CrossRef
Metadata
Title
Industrial Use of High-Strength Intermetallic Compounds Based on Aluminides and Prospects for Extending Scope of Their Application
Authors
S. G. Zhilin
V. V. Predein
O. N. Komarov
Publication date
23-02-2023
Publisher
Springer US
Published in
Metallurgist / Issue 9-10/2023
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-023-01424-4

Other articles of this Issue 9-10/2023

Metallurgist 9-10/2023 Go to the issue

Premium Partners