Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 2/2022

01-02-2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Mechanically Synthesized Ti5Si3Сх/Ti2AlC Composite: Phase Analysis, Microstructure, and Properties

Authors: M. A. Eremina, S. F. Lomaeva, V. V. Tarasov

Published in: Physics of Metals and Metallography | Issue 2/2022

Login to get access
share
SHARE

Abstract

The Ti5Si3Сх-based composites containing 10 vol % Ti2AlC, which are prepared by mechanical alloying of Ti, Si, and Al powders in a liquid hydrocarbon and subsequent heat treatment, are studied. The carbosilicide phase is found to form based on a silicide already at the mechanical alloying stage, whereas Ti2AlC forms during subsequent heat treatment. It is shown that, at 1300°С, the sintering of a sample takes place, which results in the formation of a porous (~13%) composite with a density of 3.75 ± 0.01 g/cm3 and a hardness of 10 ± 1 GPa. The dry friction coefficient of the composite, which is determined upon frictional tests with the WC/6Co alloy counterbody, is ~0.55.
Literature
1.
go back to reference L. Wang, W. Jiang, L. Chen, and G. Bai, “Microstructure of Ti 5Si 3–TiC–Ti 3SiC 2 and Ti 5Si 3–TiC nanocomposites in situ synthesized by spark plasma sintering,” J. Mater. Res. 19, No. 10, 3004–3008 (2004). CrossRef L. Wang, W. Jiang, L. Chen, and G. Bai, “Microstructure of Ti 5Si 3–TiC–Ti 3SiC 2 and Ti 5Si 3–TiC nanocomposites in situ synthesized by spark plasma sintering,” J. Mater. Res. 19, No. 10, 3004–3008 (2004). CrossRef
2.
go back to reference K. Kasraee, M. Yousefpour, S. A. Tayebifard, and E. Salahi, “Microstructure and mechanical properties of an ultrafine grained Ti 5Si 3–TiC composite fabricated by spark plasma sintering,” Adv. Powder Technol. 30, 992–998 (2019). CrossRef K. Kasraee, M. Yousefpour, S. A. Tayebifard, and E. Salahi, “Microstructure and mechanical properties of an ultrafine grained Ti 5Si 3–TiC composite fabricated by spark plasma sintering,” Adv. Powder Technol. 30, 992–998 (2019). CrossRef
3.
go back to reference M. W. Barsoum, MAX Phases: Properties of Machinable Ternary Carbides and Nitrides (John Wiley & Sons, New York, 2013), p. 436. CrossRef M. W. Barsoum, MAX Phases: Properties of Machinable Ternary Carbides and Nitrides (John Wiley & Sons, New York, 2013), p. 436. CrossRef
4.
go back to reference J. Gonzales-Julian, “Processing of MAX phases: From synthesis to applications,” J. Am. Ceram. Soc. 104, No. 2, 659–690 (2020). CrossRef J. Gonzales-Julian, “Processing of MAX phases: From synthesis to applications,” J. Am. Ceram. Soc. 104, No. 2, 659–690 (2020). CrossRef
5.
go back to reference K. Kasraee, A. Tayebifard, and E. Salahi, “Effect of substitution of Si by Al on microstructure and synthesis behavior of Ti 5Si 3 based alloys fabricated by mechanically activated self-propagating high-temperature synthesis,” Adv. Powder Technol. 25, 885–890 (2014). CrossRef K. Kasraee, A. Tayebifard, and E. Salahi, “Effect of substitution of Si by Al on microstructure and synthesis behavior of Ti 5Si 3 based alloys fabricated by mechanically activated self-propagating high-temperature synthesis,” Adv. Powder Technol. 25, 885–890 (2014). CrossRef
6.
go back to reference M. Zha, H. Y. Wang, S. T. Li, S. L. Li, Q. L. Guan, and Q. C. Jiang, “Influence of Al addition on the products of self-propagating high-temperature synthesis of Al–Ti–Si system,” Mater. Chem. Phys. 114, 709–715 (2009). CrossRef M. Zha, H. Y. Wang, S. T. Li, S. L. Li, Q. L. Guan, and Q. C. Jiang, “Influence of Al addition on the products of self-propagating high-temperature synthesis of Al–Ti–Si system,” Mater. Chem. Phys. 114, 709–715 (2009). CrossRef
7.
go back to reference C. L. Yeh and W. E. Sun, “Use of TiH 2 as a reactant in combustion synthesis of porous Ti 5Si 3 and Ti 5Si 3/TiAl intermetallics,” J. Alloys Compd. 669, 66–71 (2016). CrossRef C. L. Yeh and W. E. Sun, “Use of TiH 2 as a reactant in combustion synthesis of porous Ti 5Si 3 and Ti 5Si 3/TiAl intermetallics,” J. Alloys Compd. 669, 66–71 (2016). CrossRef
8.
go back to reference A. Knaislová, P. Novák, M. Cabibbo, L. Jaworska, and D. Vojtӗch, “Development of TiAl–Si Alloys–A Review,” Materials 14, 1030 (2021). CrossRef A. Knaislová, P. Novák, M. Cabibbo, L. Jaworska, and D. Vojtӗch, “Development of TiAl–Si Alloys–A Review,” Materials 14, 1030 (2021). CrossRef
9.
go back to reference R. Chen, H. Fang, X. Chen, Y. Su, H. Ding, J. Guo, and H. Fu, “Formation of TiC/Ti 2AlC and α 2 + γ in in-situ TiAl composites with different solidification paths,” Intermetallics 81, 9–15 (2017). CrossRef R. Chen, H. Fang, X. Chen, Y. Su, H. Ding, J. Guo, and H. Fu, “Formation of TiC/Ti 2AlC and α 2 + γ in in-situ TiAl composites with different solidification paths,” Intermetallics 81, 9–15 (2017). CrossRef
10.
go back to reference C. Qin, L. Wang, S. Bai, W. Jiang, L. Chen, “Effect of Ti 3SiC 2 content on mechanical properties of Ti 5Si 3–TiC–Ti 3SiC 2 composites,” Key Eng. Mater. 336– 338, 1383–1385 (2007). CrossRef C. Qin, L. Wang, S. Bai, W. Jiang, L. Chen, “Effect of Ti 3SiC 2 content on mechanical properties of Ti 5Si 3–TiC–Ti 3SiC 2 composites,” Key Eng. Mater. 336338, 1383–1385 (2007). CrossRef
11.
go back to reference K. P. Rao and Y. J. Du, “In situ formation of titanium silicides-reinforced TiAl-based composites,” Mater. Sci. Eng., A 277, 46–56 (2000). CrossRef K. P. Rao and Y. J. Du, “In situ formation of titanium silicides-reinforced TiAl-based composites,” Mater. Sci. Eng., A 277, 46–56 (2000). CrossRef
12.
go back to reference F. Zhang, L. Zhao, S. Yan, J. He, and F. Yin, “Microstructure and mechanical properties of plasma sprayed TiC/Ti 5Si 3/Ti 3SiC 2 composite coatings with Al additions,” Ceram. Int. 46, 16298–16309 (2020). CrossRef F. Zhang, L. Zhao, S. Yan, J. He, and F. Yin, “Microstructure and mechanical properties of plasma sprayed TiC/Ti 5Si 3/Ti 3SiC 2 composite coatings with Al additions,” Ceram. Int. 46, 16298–16309 (2020). CrossRef
13.
go back to reference Y. Liu, J. Chen, and Y. Zhou, “Effect of Ti 5Si 3 on wear properties of Ti 3Si(Al)C 2,” J. Eur. Ceram. Soc. 29, 3379–3385 (2009). CrossRef Y. Liu, J. Chen, and Y. Zhou, “Effect of Ti 5Si 3 on wear properties of Ti 3Si(Al)C 2,” J. Eur. Ceram. Soc. 29, 3379–3385 (2009). CrossRef
14.
go back to reference A. Benamor, Y. Hadji, N. Chiker, A. Haddad, B. Guedouar, M. Labaiz, M. Hakem, A. Tricoteaux, C. Nivot, J. P. Erauw, R. Badji, and M. Hadji, “Spark Plasma Sintering and tribological behavior of Ti 3SiC 2–Ti 5Si 3–TiC composites,” Ceram. Int. 45, 21781–21792 (2019). CrossRef A. Benamor, Y. Hadji, N. Chiker, A. Haddad, B. Guedouar, M. Labaiz, M. Hakem, A. Tricoteaux, C. Nivot, J. P. Erauw, R. Badji, and M. Hadji, “Spark Plasma Sintering and tribological behavior of Ti 3SiC 2–Ti 5Si 3–TiC composites,” Ceram. Int. 45, 21781–21792 (2019). CrossRef
15.
go back to reference C. Li, F. Zhang, J. He, and F. Yin, “Preparation and properties of reactive plasma sprayed TiC–Ti 5Si 3–Ti 3SiC 2/Al coatings from Ti–Si–C–Al mixed powders,” Mater. Chem. Phys. 269, 124772 (2021). CrossRef C. Li, F. Zhang, J. He, and F. Yin, “Preparation and properties of reactive plasma sprayed TiC–Ti 5Si 3–Ti 3SiC 2/Al coatings from Ti–Si–C–Al mixed powders,” Mater. Chem. Phys. 269, 124772 (2021). CrossRef
16.
go back to reference L. Zhao, F. Zhang, L. Wang, S. Yan, J. He, and F. Yin, “Effects of post-annealing on microstructure and mechanical properties of plasma sprayed Ti–Si–C composite coatings with Al addition,” Surf. Coat. Technol. 416, 127164 (2021). CrossRef L. Zhao, F. Zhang, L. Wang, S. Yan, J. He, and F. Yin, “Effects of post-annealing on microstructure and mechanical properties of plasma sprayed Ti–Si–C composite coatings with Al addition,” Surf. Coat. Technol. 416, 127164 (2021). CrossRef
17.
go back to reference Z. Wang, H. Zhang, X. Liu, Y. Jiang, H. Gao, and Y. He, “Reactive synthesis of porous nanolaminate Ti 3(Si,Al)C 2 intermetallic compound,” Mater. Chem. Phys. 208, 85–90 (2018). CrossRef Z. Wang, H. Zhang, X. Liu, Y. Jiang, H. Gao, and Y. He, “Reactive synthesis of porous nanolaminate Ti 3(Si,Al)C 2 intermetallic compound,” Mater. Chem. Phys. 208, 85–90 (2018). CrossRef
18.
go back to reference X. Xu, T. L. Ngai, and Y. Li, “Synthesis and characterization of quarternary Ti 3Si (1 – x)Al xC 2 MAX phase materials,” Ceram. Int. 41, 7626–7631 (2015). CrossRef X. Xu, T. L. Ngai, and Y. Li, “Synthesis and characterization of quarternary Ti 3Si (1 – x)Al xC 2 MAX phase materials,” Ceram. Int. 41, 7626–7631 (2015). CrossRef
19.
go back to reference J. Zhang, W. Liu, Y. Jin, S. Wu, T. Hu, Y. Li, and X. Xiao, “Study of the interfacial reaction between Ti 3SiC 2 particles and Al matrix,” J. Alloys Compd. 738, 1–9 (2018). CrossRef J. Zhang, W. Liu, Y. Jin, S. Wu, T. Hu, Y. Li, and X. Xiao, “Study of the interfacial reaction between Ti 3SiC 2 particles and Al matrix,” J. Alloys Compd. 738, 1–9 (2018). CrossRef
20.
go back to reference V. T. Witusiewicz, B. Hallstedt, A. A. Bondar, U. Hecht, S. V. Sleptsov, and T. Ya. Velikanova, “Thermodynamic description of the Al–C–Ti system,” J. Alloys Compd. 623, 480–496 (2015). CrossRef V. T. Witusiewicz, B. Hallstedt, A. A. Bondar, U. Hecht, S. V. Sleptsov, and T. Ya. Velikanova, “Thermodynamic description of the Al–C–Ti system,” J. Alloys Compd. 623, 480–496 (2015). CrossRef
21.
go back to reference I. A. Astapov, N. M. Vlasova, T. B. Ershova, and E. A. Kirichenko, “Phase formation during the sintering of A Ti-Al-SIC composite material,” Tsvetn. Met., No. 8, 75–79 (2018). I. A. Astapov, N. M. Vlasova, T. B. Ershova, and E. A. Kirichenko, “Phase formation during the sintering of A Ti-Al-SIC composite material,” Tsvetn. Met., No. 8, 75–79 (2018).
22.
go back to reference K. Kasraee, M. Yousefpour, and S. A. Tayebifard, “Mechanical properties and microstructure of Ti 5Si 3 based composites prepared by combination of MASHS and SPS in Ti–Si–Ni and Ti–Si–Ni–C systems,” Mater. Chem. Phys. 222, 286–293 (2019). CrossRef K. Kasraee, M. Yousefpour, and S. A. Tayebifard, “Mechanical properties and microstructure of Ti 5Si 3 based composites prepared by combination of MASHS and SPS in Ti–Si–Ni and Ti–Si–Ni–C systems,” Mater. Chem. Phys. 222, 286–293 (2019). CrossRef
23.
go back to reference A. J. Thom, V. G. Young, and M. Akinc, “Lattice trends in Ti 5Si 3Z x (Z = B, C, N, O and 0 < x < 1),” J. Alloys Compd. 296, 59–66 (2000). CrossRef A. J. Thom, V. G. Young, and M. Akinc, “Lattice trends in Ti 5Si 3Z x (Z = B, C, N, O and 0 < x < 1),” J. Alloys Compd. 296, 59–66 (2000). CrossRef
24.
go back to reference Y.-S. Lee and S.-M. Lee, “Phase formation during mechanical alloying in the Ti–Si system,” Mater. Sci. Eng., A 449–451, 1099–1101 (2007). CrossRef Y.-S. Lee and S.-M. Lee, “Phase formation during mechanical alloying in the Ti–Si system,” Mater. Sci. Eng., A 449–451, 1099–1101 (2007). CrossRef
25.
go back to reference U. K. Bhaskar and S. K. Pradhan, “Microstructure and optical characterization of mechanosynthesized nanostructured TiSi xN (1 – x) cermets,” Bull. Mater. Sci. 43, 34 (2020). CrossRef U. K. Bhaskar and S. K. Pradhan, “Microstructure and optical characterization of mechanosynthesized nanostructured TiSi xN (1 – x) cermets,” Bull. Mater. Sci. 43, 34 (2020). CrossRef
26.
go back to reference M. A. Eryomina, S. F. Lomayeva, and S. L. Demakov, “Synthesis of titanium carbosilicides in Ti–Si and Ti–Si–Cu systems under mechanical alloying of elemental powders in liquid hydrocarbon,” J. Solid State Chem. 290, 121575 (2020). CrossRef M. A. Eryomina, S. F. Lomayeva, and S. L. Demakov, “Synthesis of titanium carbosilicides in Ti–Si and Ti–Si–Cu systems under mechanical alloying of elemental powders in liquid hydrocarbon,” J. Solid State Chem. 290, 121575 (2020). CrossRef
27.
go back to reference J. Keskinen, A. Pogany, J. Rubin, and P. Ruuskanen, “Carbide and hydride formation during mechanical alloying of titanium and aluminium with hexane,” Mater. Sci. Eng., A 196, 205–211 (1995). CrossRef J. Keskinen, A. Pogany, J. Rubin, and P. Ruuskanen, “Carbide and hydride formation during mechanical alloying of titanium and aluminium with hexane,” Mater. Sci. Eng., A 196, 205–211 (1995). CrossRef
28.
go back to reference M. A. Eryomina, S. F. Lomayeva, and S. L. Demakov, “Synthesis of composite based on Ti 2AlC with added nanographite via wet ball milling followed by spark plasma sintering,” Mater. Chem. Phys. 273, 125114 (2021). CrossRef M. A. Eryomina, S. F. Lomayeva, and S. L. Demakov, “Synthesis of composite based on Ti 2AlC with added nanographite via wet ball milling followed by spark plasma sintering,” Mater. Chem. Phys. 273, 125114 (2021). CrossRef
29.
go back to reference S. Badie, A. Dash, Y. J. Sohn, R. Vaßen, O. Guillon, and J. Gonzalez-Julian, “Synthesis, sintering, and effect of surface roughness on oxidation of submicron Ti 2AlC ceramics,” J. Am. Ceram. Soc. 104, 1669–1688 (2021). CrossRef S. Badie, A. Dash, Y. J. Sohn, R. Vaßen, O. Guillon, and J. Gonzalez-Julian, “Synthesis, sintering, and effect of surface roughness on oxidation of submicron Ti 2AlC ceramics,” J. Am. Ceram. Soc. 104, 1669–1688 (2021). CrossRef
30.
go back to reference D. G. Archer, “Enthalpy increment measurements from 4.5 K to 350 K and the thermodynamic properties of the titanium silicide Ti 5Si 3(Cr),” J. Chem. Eng. Data 41, 571–575 (1996). CrossRef D. G. Archer, “Enthalpy increment measurements from 4.5 K to 350 K and the thermodynamic properties of the titanium silicide Ti 5Si 3(Cr),” J. Chem. Eng. Data 41, 571–575 (1996). CrossRef
31.
go back to reference J. J. Williams, “Structure and high-temperature properties of Ti 5Si 3 with interstitial additions,” Retrospective Theses and Dissertations, 12494 (1999), p. 124. https://​lib.​dr.​iastate.​edu/​rtd/​12494?​utm_​source=​lib.​dr.​ iastate.edu%2Frtd%2F12494&utm_medium=PDF&utm_campaign=PDFCoverPages J. J. Williams, “Structure and high-temperature properties of Ti 5Si 3 with interstitial additions,” Retrospective Theses and Dissertations, 12494 (1999), p. 124. https://​lib.​dr.​iastate.​edu/​rtd/​12494?​utm_​source=​lib.​dr.​ iastate.edu%2Frtd%2F12494&utm_medium=PDF&utm_campaign=PDFCoverPages
32.
go back to reference G. Sharma, M. Naguib, D. Feng, Y. Gogotsi, and A. Navrotsky, “Calorimetric determination of thermodynamic stability of MAX and MXene phases,” J. Phys. Chem. C 120, No. 49, 28131–28137 (2016). CrossRef G. Sharma, M. Naguib, D. Feng, Y. Gogotsi, and A. Navrotsky, “Calorimetric determination of thermodynamic stability of MAX and MXene phases,” J. Phys. Chem. C 120, No. 49, 28131–28137 (2016). CrossRef
33.
go back to reference T. Cabioc’h, P. Eklund, V. Mauchamp, and M. Jaouen, “Structural investigation of substoichiometry and solid solution effects in Ti 2Al(C x,N 1 – x) y compounds,” J. Eur. Ceram. Soc. 32, 1803–1811 (2012). CrossRef T. Cabioc’h, P. Eklund, V. Mauchamp, and M. Jaouen, “Structural investigation of substoichiometry and solid solution effects in Ti 2Al(C x,N 1 – x) y compounds,” J. Eur. Ceram. Soc. 32, 1803–1811 (2012). CrossRef
34.
go back to reference E. I. Sokolova, N. A. Martirosyan, and M. D. Nersesyan, “Thermal stability of titanium carbohydrides,” Zh. Neorg. Khim. 26, No. 7, 1949–1951 (1981). E. I. Sokolova, N. A. Martirosyan, and M. D. Nersesyan, “Thermal stability of titanium carbohydrides,” Zh. Neorg. Khim. 26, No. 7, 1949–1951 (1981).
35.
go back to reference S. Sabooni, F. Karimzadeh, and M. H. Abbasi, “Thermodynamic aspects of nanostructured Ti 5Si 3 formation during mechanical alloying and its characterization,” Bull. Mater. Sci. 35, No. 3, 439–447 (2012). CrossRef S. Sabooni, F. Karimzadeh, and M. H. Abbasi, “Thermodynamic aspects of nanostructured Ti 5Si 3 formation during mechanical alloying and its characterization,” Bull. Mater. Sci. 35, No. 3, 439–447 (2012). CrossRef
36.
go back to reference S. Gupta and M. W. Barsoum, “On the tribology of the MAX phases and their composites during dry sliding: A review,” Wear 271, 1878–1894 (2011). CrossRef S. Gupta and M. W. Barsoum, “On the tribology of the MAX phases and their composites during dry sliding: A review,” Wear 271, 1878–1894 (2011). CrossRef
37.
go back to reference F. Cheng, F. Li, L. Fu, Z. Qiao, J. Yang, and W. Liu, “Dry-sliding tribological properties of TiAl/Ti 2AlC composites,” Tribol. Lett. 53, 457–467 (2014). CrossRef F. Cheng, F. Li, L. Fu, Z. Qiao, J. Yang, and W. Liu, “Dry-sliding tribological properties of TiAl/Ti 2AlC composites,” Tribol. Lett. 53, 457–467 (2014). CrossRef
38.
go back to reference L. G. Korshunov and N. L. Chernenko, “Formation of a wear-resistant nanocrystalline layer strengthened by TiO 2 (Rutile) particles on the surface of titanium,” Phys. Met. Metallogr. 114, 789–797 (2013). CrossRef L. G. Korshunov and N. L. Chernenko, “Formation of a wear-resistant nanocrystalline layer strengthened by TiO 2 (Rutile) particles on the surface of titanium,” Phys. Met. Metallogr. 114, 789–797 (2013). CrossRef
39.
go back to reference M. A. H. El-Meniawia and E. Gewfiel, “Wear behavior of graphite nano plates/Al composites,” Phys. Met. Metallogr. 120, 78–86 (2019). CrossRef M. A. H. El-Meniawia and E. Gewfiel, “Wear behavior of graphite nano plates/Al composites,” Phys. Met. Metallogr. 120, 78–86 (2019). CrossRef
Metadata
Title
Mechanically Synthesized Ti5Si3Сх/Ti2AlC Composite: Phase Analysis, Microstructure, and Properties
Authors
M. A. Eremina
S. F. Lomaeva
V. V. Tarasov
Publication date
01-02-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 2/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X2202003X