Skip to main content
Top
Published in: Physics of Metals and Metallography 2/2022

01-02-2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Mechanically Synthesized Ti5Si3Сх/Ti2AlC Composite: Phase Analysis, Microstructure, and Properties

Authors: M. A. Eremina, S. F. Lomaeva, V. V. Tarasov

Published in: Physics of Metals and Metallography | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Ti5Si3Сх-based composites containing 10 vol % Ti2AlC, which are prepared by mechanical alloying of Ti, Si, and Al powders in a liquid hydrocarbon and subsequent heat treatment, are studied. The carbosilicide phase is found to form based on a silicide already at the mechanical alloying stage, whereas Ti2AlC forms during subsequent heat treatment. It is shown that, at 1300°С, the sintering of a sample takes place, which results in the formation of a porous (~13%) composite with a density of 3.75 ± 0.01 g/cm3 and a hardness of 10 ± 1 GPa. The dry friction coefficient of the composite, which is determined upon frictional tests with the WC/6Co alloy counterbody, is ~0.55.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference L. Wang, W. Jiang, L. Chen, and G. Bai, “Microstructure of Ti5Si3–TiC–Ti3SiC2 and Ti5Si3–TiC nanocomposites in situ synthesized by spark plasma sintering,” J. Mater. Res. 19, No. 10, 3004–3008 (2004).CrossRef L. Wang, W. Jiang, L. Chen, and G. Bai, “Microstructure of Ti5Si3–TiC–Ti3SiC2 and Ti5Si3–TiC nanocomposites in situ synthesized by spark plasma sintering,” J. Mater. Res. 19, No. 10, 3004–3008 (2004).CrossRef
2.
go back to reference K. Kasraee, M. Yousefpour, S. A. Tayebifard, and E. Salahi, “Microstructure and mechanical properties of an ultrafine grained Ti5Si3–TiC composite fabricated by spark plasma sintering,” Adv. Powder Technol. 30, 992–998 (2019).CrossRef K. Kasraee, M. Yousefpour, S. A. Tayebifard, and E. Salahi, “Microstructure and mechanical properties of an ultrafine grained Ti5Si3–TiC composite fabricated by spark plasma sintering,” Adv. Powder Technol. 30, 992–998 (2019).CrossRef
3.
go back to reference M. W. Barsoum, MAX Phases: Properties of Machinable Ternary Carbides and Nitrides (John Wiley & Sons, New York, 2013), p. 436.CrossRef M. W. Barsoum, MAX Phases: Properties of Machinable Ternary Carbides and Nitrides (John Wiley & Sons, New York, 2013), p. 436.CrossRef
4.
go back to reference J. Gonzales-Julian, “Processing of MAX phases: From synthesis to applications,” J. Am. Ceram. Soc. 104, No. 2, 659–690 (2020).CrossRef J. Gonzales-Julian, “Processing of MAX phases: From synthesis to applications,” J. Am. Ceram. Soc. 104, No. 2, 659–690 (2020).CrossRef
5.
go back to reference K. Kasraee, A. Tayebifard, and E. Salahi, “Effect of substitution of Si by Al on microstructure and synthesis behavior of Ti5Si3 based alloys fabricated by mechanically activated self-propagating high-temperature synthesis,” Adv. Powder Technol. 25, 885–890 (2014).CrossRef K. Kasraee, A. Tayebifard, and E. Salahi, “Effect of substitution of Si by Al on microstructure and synthesis behavior of Ti5Si3 based alloys fabricated by mechanically activated self-propagating high-temperature synthesis,” Adv. Powder Technol. 25, 885–890 (2014).CrossRef
6.
go back to reference M. Zha, H. Y. Wang, S. T. Li, S. L. Li, Q. L. Guan, and Q. C. Jiang, “Influence of Al addition on the products of self-propagating high-temperature synthesis of Al–Ti–Si system,” Mater. Chem. Phys. 114, 709–715 (2009).CrossRef M. Zha, H. Y. Wang, S. T. Li, S. L. Li, Q. L. Guan, and Q. C. Jiang, “Influence of Al addition on the products of self-propagating high-temperature synthesis of Al–Ti–Si system,” Mater. Chem. Phys. 114, 709–715 (2009).CrossRef
7.
go back to reference C. L. Yeh and W. E. Sun, “Use of TiH2 as a reactant in combustion synthesis of porous Ti5Si3 and Ti5Si3/TiAl intermetallics,” J. Alloys Compd. 669, 66–71 (2016).CrossRef C. L. Yeh and W. E. Sun, “Use of TiH2 as a reactant in combustion synthesis of porous Ti5Si3 and Ti5Si3/TiAl intermetallics,” J. Alloys Compd. 669, 66–71 (2016).CrossRef
8.
go back to reference A. Knaislová, P. Novák, M. Cabibbo, L. Jaworska, and D. Vojtӗch, “Development of TiAl–Si Alloys–A Review,” Materials 14, 1030 (2021).CrossRef A. Knaislová, P. Novák, M. Cabibbo, L. Jaworska, and D. Vojtӗch, “Development of TiAl–Si Alloys–A Review,” Materials 14, 1030 (2021).CrossRef
9.
go back to reference R. Chen, H. Fang, X. Chen, Y. Su, H. Ding, J. Guo, and H. Fu, “Formation of TiC/Ti2AlC and α2 + γ in in-situ TiAl composites with different solidification paths,” Intermetallics 81, 9–15 (2017).CrossRef R. Chen, H. Fang, X. Chen, Y. Su, H. Ding, J. Guo, and H. Fu, “Formation of TiC/Ti2AlC and α2 + γ in in-situ TiAl composites with different solidification paths,” Intermetallics 81, 9–15 (2017).CrossRef
10.
go back to reference C. Qin, L. Wang, S. Bai, W. Jiang, L. Chen, “Effect of Ti3SiC2 content on mechanical properties of Ti5Si3–TiC–Ti3SiC2 composites,” Key Eng. Mater. 336–338, 1383–1385 (2007).CrossRef C. Qin, L. Wang, S. Bai, W. Jiang, L. Chen, “Effect of Ti3SiC2 content on mechanical properties of Ti5Si3–TiC–Ti3SiC2 composites,” Key Eng. Mater. 336338, 1383–1385 (2007).CrossRef
11.
go back to reference K. P. Rao and Y. J. Du, “In situ formation of titanium silicides-reinforced TiAl-based composites,” Mater. Sci. Eng., A 277, 46–56 (2000).CrossRef K. P. Rao and Y. J. Du, “In situ formation of titanium silicides-reinforced TiAl-based composites,” Mater. Sci. Eng., A 277, 46–56 (2000).CrossRef
12.
go back to reference F. Zhang, L. Zhao, S. Yan, J. He, and F. Yin, “Microstructure and mechanical properties of plasma sprayed TiC/Ti5Si3/Ti3SiC2 composite coatings with Al additions,” Ceram. Int. 46, 16298–16309 (2020).CrossRef F. Zhang, L. Zhao, S. Yan, J. He, and F. Yin, “Microstructure and mechanical properties of plasma sprayed TiC/Ti5Si3/Ti3SiC2 composite coatings with Al additions,” Ceram. Int. 46, 16298–16309 (2020).CrossRef
13.
go back to reference Y. Liu, J. Chen, and Y. Zhou, “Effect of Ti5Si3 on wear properties of Ti3Si(Al)C2,” J. Eur. Ceram. Soc. 29, 3379–3385 (2009).CrossRef Y. Liu, J. Chen, and Y. Zhou, “Effect of Ti5Si3 on wear properties of Ti3Si(Al)C2,” J. Eur. Ceram. Soc. 29, 3379–3385 (2009).CrossRef
14.
go back to reference A. Benamor, Y. Hadji, N. Chiker, A. Haddad, B. Guedouar, M. Labaiz, M. Hakem, A. Tricoteaux, C. Nivot, J. P. Erauw, R. Badji, and M. Hadji, “Spark Plasma Sintering and tribological behavior of Ti3SiC2–Ti5Si3–TiC composites,” Ceram. Int. 45, 21781–21792 (2019).CrossRef A. Benamor, Y. Hadji, N. Chiker, A. Haddad, B. Guedouar, M. Labaiz, M. Hakem, A. Tricoteaux, C. Nivot, J. P. Erauw, R. Badji, and M. Hadji, “Spark Plasma Sintering and tribological behavior of Ti3SiC2–Ti5Si3–TiC composites,” Ceram. Int. 45, 21781–21792 (2019).CrossRef
15.
go back to reference C. Li, F. Zhang, J. He, and F. Yin, “Preparation and properties of reactive plasma sprayed TiC–Ti5Si3–Ti3SiC2/Al coatings from Ti–Si–C–Al mixed powders,” Mater. Chem. Phys. 269, 124772 (2021).CrossRef C. Li, F. Zhang, J. He, and F. Yin, “Preparation and properties of reactive plasma sprayed TiC–Ti5Si3–Ti3SiC2/Al coatings from Ti–Si–C–Al mixed powders,” Mater. Chem. Phys. 269, 124772 (2021).CrossRef
16.
go back to reference L. Zhao, F. Zhang, L. Wang, S. Yan, J. He, and F. Yin, “Effects of post-annealing on microstructure and mechanical properties of plasma sprayed Ti–Si–C composite coatings with Al addition,” Surf. Coat. Technol. 416, 127164 (2021).CrossRef L. Zhao, F. Zhang, L. Wang, S. Yan, J. He, and F. Yin, “Effects of post-annealing on microstructure and mechanical properties of plasma sprayed Ti–Si–C composite coatings with Al addition,” Surf. Coat. Technol. 416, 127164 (2021).CrossRef
17.
go back to reference Z. Wang, H. Zhang, X. Liu, Y. Jiang, H. Gao, and Y. He, “Reactive synthesis of porous nanolaminate Ti3(Si,Al)C2 intermetallic compound,” Mater. Chem. Phys. 208, 85–90 (2018).CrossRef Z. Wang, H. Zhang, X. Liu, Y. Jiang, H. Gao, and Y. He, “Reactive synthesis of porous nanolaminate Ti3(Si,Al)C2 intermetallic compound,” Mater. Chem. Phys. 208, 85–90 (2018).CrossRef
18.
go back to reference X. Xu, T. L. Ngai, and Y. Li, “Synthesis and characterization of quarternary Ti3Si(1 – x)AlxC2 MAX phase materials,” Ceram. Int. 41, 7626–7631 (2015).CrossRef X. Xu, T. L. Ngai, and Y. Li, “Synthesis and characterization of quarternary Ti3Si(1 – x)AlxC2 MAX phase materials,” Ceram. Int. 41, 7626–7631 (2015).CrossRef
19.
go back to reference J. Zhang, W. Liu, Y. Jin, S. Wu, T. Hu, Y. Li, and X. Xiao, “Study of the interfacial reaction between Ti3SiC2 particles and Al matrix,” J. Alloys Compd. 738, 1–9 (2018).CrossRef J. Zhang, W. Liu, Y. Jin, S. Wu, T. Hu, Y. Li, and X. Xiao, “Study of the interfacial reaction between Ti3SiC2 particles and Al matrix,” J. Alloys Compd. 738, 1–9 (2018).CrossRef
20.
go back to reference V. T. Witusiewicz, B. Hallstedt, A. A. Bondar, U. Hecht, S. V. Sleptsov, and T. Ya. Velikanova, “Thermodynamic description of the Al–C–Ti system,” J. Alloys Compd. 623, 480–496 (2015).CrossRef V. T. Witusiewicz, B. Hallstedt, A. A. Bondar, U. Hecht, S. V. Sleptsov, and T. Ya. Velikanova, “Thermodynamic description of the Al–C–Ti system,” J. Alloys Compd. 623, 480–496 (2015).CrossRef
21.
go back to reference I. A. Astapov, N. M. Vlasova, T. B. Ershova, and E. A. Kirichenko, “Phase formation during the sintering of A Ti-Al-SIC composite material,” Tsvetn. Met., No. 8, 75–79 (2018). I. A. Astapov, N. M. Vlasova, T. B. Ershova, and E. A. Kirichenko, “Phase formation during the sintering of A Ti-Al-SIC composite material,” Tsvetn. Met., No. 8, 75–79 (2018).
22.
go back to reference K. Kasraee, M. Yousefpour, and S. A. Tayebifard, “Mechanical properties and microstructure of Ti5Si3 based composites prepared by combination of MASHS and SPS in Ti–Si–Ni and Ti–Si–Ni–C systems,” Mater. Chem. Phys. 222, 286–293 (2019).CrossRef K. Kasraee, M. Yousefpour, and S. A. Tayebifard, “Mechanical properties and microstructure of Ti5Si3 based composites prepared by combination of MASHS and SPS in Ti–Si–Ni and Ti–Si–Ni–C systems,” Mater. Chem. Phys. 222, 286–293 (2019).CrossRef
23.
go back to reference A. J. Thom, V. G. Young, and M. Akinc, “Lattice trends in Ti5Si3Zx (Z = B, C, N, O and 0 < x < 1),” J. Alloys Compd. 296, 59–66 (2000).CrossRef A. J. Thom, V. G. Young, and M. Akinc, “Lattice trends in Ti5Si3Zx (Z = B, C, N, O and 0 < x < 1),” J. Alloys Compd. 296, 59–66 (2000).CrossRef
24.
go back to reference Y.-S. Lee and S.-M. Lee, “Phase formation during mechanical alloying in the Ti–Si system,” Mater. Sci. Eng., A 449–451, 1099–1101 (2007).CrossRef Y.-S. Lee and S.-M. Lee, “Phase formation during mechanical alloying in the Ti–Si system,” Mater. Sci. Eng., A 449–451, 1099–1101 (2007).CrossRef
25.
go back to reference U. K. Bhaskar and S. K. Pradhan, “Microstructure and optical characterization of mechanosynthesized nanostructured TiSixN(1 – x) cermets,” Bull. Mater. Sci. 43, 34 (2020).CrossRef U. K. Bhaskar and S. K. Pradhan, “Microstructure and optical characterization of mechanosynthesized nanostructured TiSixN(1 – x) cermets,” Bull. Mater. Sci. 43, 34 (2020).CrossRef
26.
go back to reference M. A. Eryomina, S. F. Lomayeva, and S. L. Demakov, “Synthesis of titanium carbosilicides in Ti–Si and Ti–Si–Cu systems under mechanical alloying of elemental powders in liquid hydrocarbon,” J. Solid State Chem. 290, 121575 (2020).CrossRef M. A. Eryomina, S. F. Lomayeva, and S. L. Demakov, “Synthesis of titanium carbosilicides in Ti–Si and Ti–Si–Cu systems under mechanical alloying of elemental powders in liquid hydrocarbon,” J. Solid State Chem. 290, 121575 (2020).CrossRef
27.
go back to reference J. Keskinen, A. Pogany, J. Rubin, and P. Ruuskanen, “Carbide and hydride formation during mechanical alloying of titanium and aluminium with hexane,” Mater. Sci. Eng., A 196, 205–211 (1995).CrossRef J. Keskinen, A. Pogany, J. Rubin, and P. Ruuskanen, “Carbide and hydride formation during mechanical alloying of titanium and aluminium with hexane,” Mater. Sci. Eng., A 196, 205–211 (1995).CrossRef
28.
go back to reference M. A. Eryomina, S. F. Lomayeva, and S. L. Demakov, “Synthesis of composite based on Ti2AlC with added nanographite via wet ball milling followed by spark plasma sintering,” Mater. Chem. Phys. 273, 125114 (2021).CrossRef M. A. Eryomina, S. F. Lomayeva, and S. L. Demakov, “Synthesis of composite based on Ti2AlC with added nanographite via wet ball milling followed by spark plasma sintering,” Mater. Chem. Phys. 273, 125114 (2021).CrossRef
29.
go back to reference S. Badie, A. Dash, Y. J. Sohn, R. Vaßen, O. Guillon, and J. Gonzalez-Julian, “Synthesis, sintering, and effect of surface roughness on oxidation of submicron Ti2AlC ceramics,” J. Am. Ceram. Soc. 104, 1669–1688 (2021).CrossRef S. Badie, A. Dash, Y. J. Sohn, R. Vaßen, O. Guillon, and J. Gonzalez-Julian, “Synthesis, sintering, and effect of surface roughness on oxidation of submicron Ti2AlC ceramics,” J. Am. Ceram. Soc. 104, 1669–1688 (2021).CrossRef
30.
go back to reference D. G. Archer, “Enthalpy increment measurements from 4.5 K to 350 K and the thermodynamic properties of the titanium silicide Ti5Si3(Cr),” J. Chem. Eng. Data 41, 571–575 (1996).CrossRef D. G. Archer, “Enthalpy increment measurements from 4.5 K to 350 K and the thermodynamic properties of the titanium silicide Ti5Si3(Cr),” J. Chem. Eng. Data 41, 571–575 (1996).CrossRef
31.
go back to reference J. J. Williams, “Structure and high-temperature properties of Ti5Si3 with interstitial additions,” Retrospective Theses and Dissertations, 12494 (1999), p. 124. https://lib.dr.iastate.edu/rtd/12494?utm_source=lib.dr. iastate.edu%2Frtd%2F12494&utm_medium=PDF&utm_campaign=PDFCoverPages J. J. Williams, “Structure and high-temperature properties of Ti5Si3 with interstitial additions,” Retrospective Theses and Dissertations, 12494 (1999), p. 124. https://​lib.​dr.​iastate.​edu/​rtd/​12494?​utm_​source=​lib.​dr.​ iastate.edu%2Frtd%2F12494&utm_medium=PDF&utm_campaign=PDFCoverPages
32.
go back to reference G. Sharma, M. Naguib, D. Feng, Y. Gogotsi, and A. Navrotsky, “Calorimetric determination of thermodynamic stability of MAX and MXene phases,” J. Phys. Chem. C 120, No. 49, 28131–28137 (2016).CrossRef G. Sharma, M. Naguib, D. Feng, Y. Gogotsi, and A. Navrotsky, “Calorimetric determination of thermodynamic stability of MAX and MXene phases,” J. Phys. Chem. C 120, No. 49, 28131–28137 (2016).CrossRef
33.
go back to reference T. Cabioc’h, P. Eklund, V. Mauchamp, and M. Jaouen, “Structural investigation of substoichiometry and solid solution effects in Ti2Al(Cx,N1 – x)y compounds,” J. Eur. Ceram. Soc. 32, 1803–1811 (2012).CrossRef T. Cabioc’h, P. Eklund, V. Mauchamp, and M. Jaouen, “Structural investigation of substoichiometry and solid solution effects in Ti2Al(Cx,N1 – x)y compounds,” J. Eur. Ceram. Soc. 32, 1803–1811 (2012).CrossRef
34.
go back to reference E. I. Sokolova, N. A. Martirosyan, and M. D. Nersesyan, “Thermal stability of titanium carbohydrides,” Zh. Neorg. Khim. 26, No. 7, 1949–1951 (1981). E. I. Sokolova, N. A. Martirosyan, and M. D. Nersesyan, “Thermal stability of titanium carbohydrides,” Zh. Neorg. Khim. 26, No. 7, 1949–1951 (1981).
35.
go back to reference S. Sabooni, F. Karimzadeh, and M. H. Abbasi, “Thermodynamic aspects of nanostructured Ti5Si3 formation during mechanical alloying and its characterization,” Bull. Mater. Sci. 35, No. 3, 439–447 (2012).CrossRef S. Sabooni, F. Karimzadeh, and M. H. Abbasi, “Thermodynamic aspects of nanostructured Ti5Si3 formation during mechanical alloying and its characterization,” Bull. Mater. Sci. 35, No. 3, 439–447 (2012).CrossRef
36.
go back to reference S. Gupta and M. W. Barsoum, “On the tribology of the MAX phases and their composites during dry sliding: A review,” Wear 271, 1878–1894 (2011).CrossRef S. Gupta and M. W. Barsoum, “On the tribology of the MAX phases and their composites during dry sliding: A review,” Wear 271, 1878–1894 (2011).CrossRef
37.
go back to reference F. Cheng, F. Li, L. Fu, Z. Qiao, J. Yang, and W. Liu, “Dry-sliding tribological properties of TiAl/Ti2AlC composites,” Tribol. Lett. 53, 457–467 (2014).CrossRef F. Cheng, F. Li, L. Fu, Z. Qiao, J. Yang, and W. Liu, “Dry-sliding tribological properties of TiAl/Ti2AlC composites,” Tribol. Lett. 53, 457–467 (2014).CrossRef
38.
go back to reference L. G. Korshunov and N. L. Chernenko, “Formation of a wear-resistant nanocrystalline layer strengthened by TiO2 (Rutile) particles on the surface of titanium,” Phys. Met. Metallogr. 114, 789–797 (2013).CrossRef L. G. Korshunov and N. L. Chernenko, “Formation of a wear-resistant nanocrystalline layer strengthened by TiO2 (Rutile) particles on the surface of titanium,” Phys. Met. Metallogr. 114, 789–797 (2013).CrossRef
39.
go back to reference M. A. H. El-Meniawia and E. Gewfiel, “Wear behavior of graphite nano plates/Al composites,” Phys. Met. Metallogr. 120, 78–86 (2019).CrossRef M. A. H. El-Meniawia and E. Gewfiel, “Wear behavior of graphite nano plates/Al composites,” Phys. Met. Metallogr. 120, 78–86 (2019).CrossRef
Metadata
Title
Mechanically Synthesized Ti5Si3Сх/Ti2AlC Composite: Phase Analysis, Microstructure, and Properties
Authors
M. A. Eremina
S. F. Lomaeva
V. V. Tarasov
Publication date
01-02-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 2/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X2202003X

Other articles of this Issue 2/2022

Physics of Metals and Metallography 2/2022 Go to the issue