Skip to main content
Top
Published in: Cellulose 1/2018

08-11-2017 | Original Paper

Mechanisms contributing to mechanical property changes in composites of polypropylene reinforced with spray-dried cellulose nanofibrils

Authors: Lu Wang, Alec W. Roach, Douglas J. Gardner, Yousoo Han

Published in: Cellulose | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study revealed the effects of spray-dried cellulose nanofibril (SDCNF) addition (3,10 and 30 wt%) and maleic anhydride polypropylene (MAPP) coupling agent (2 wt%) on the mechanical properties of polypropylene (PP). Results indicated that the elastic moduli of the PP composites increased as the SDCNF content increased above 10 wt%. The addition of MAPP into the SDCNF/PP composites did not improve the elastic moduli. Flexural strength of PP was improved when the SDCNF content increased above 10 wt%, while the tensile strength of PP decreased as the SDCNF content increased. The addition of MAPP into the SDCNF/PP composites increased the strength of the composites when the SDCNF content was above 10 wt%. Without the addition of MAPP, the composite’s impact strength did not exhibit a significant increase among the pure PP and SDCNF/PP composites. No significant differences in crystallinity or crystal forms were found in the pure PP and PP/MAPP/SDCNF composites. The spherulitic size of PP was reduced after adding SDCNF into the PP.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahmed S, Jones FR (1990) A review of particulate reinforcement theories for polymer composites. J Mater Sci Lett 25(12):4933–4942CrossRef Ahmed S, Jones FR (1990) A review of particulate reinforcement theories for polymer composites. J Mater Sci Lett 25(12):4933–4942CrossRef
go back to reference Arencón D, Velasco JI (2009) Fracture toughness of polypropylene-based particulate composites. Materials 2:2046–2094CrossRef Arencón D, Velasco JI (2009) Fracture toughness of polypropylene-based particulate composites. Materials 2:2046–2094CrossRef
go back to reference Bengtsson M, Le Baillif M, Oksman K (2007) Extrusion and mechanical properties of highly filled cellulose fibre–polypropylene composites. Compos Part A Appl Sci Manuf 38(8):1922–1931CrossRef Bengtsson M, Le Baillif M, Oksman K (2007) Extrusion and mechanical properties of highly filled cellulose fibre–polypropylene composites. Compos Part A Appl Sci Manuf 38(8):1922–1931CrossRef
go back to reference Bourbigot S, Garnier L, Revel B, Duquesne S (2013) Characterization of the morphology of iPP/sPP blends with various compositions. Express Polym Lett 7:224–237CrossRef Bourbigot S, Garnier L, Revel B, Duquesne S (2013) Characterization of the morphology of iPP/sPP blends with various compositions. Express Polym Lett 7:224–237CrossRef
go back to reference Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M (2001) Review: current international research into cellulosic fibres and composites. J Mater Sci Lett 36(9):2107–2131CrossRef Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M (2001) Review: current international research into cellulosic fibres and composites. J Mater Sci Lett 36(9):2107–2131CrossRef
go back to reference Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B Eng 39(6):933–961CrossRef Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B Eng 39(6):933–961CrossRef
go back to reference Gardner DJ, Tajvidi M (2016) Hydrogen bonding in wood-based materials: an update. Wood Fiber Sci 48(4):234–244 Gardner DJ, Tajvidi M (2016) Hydrogen bonding in wood-based materials: an update. Wood Fiber Sci 48(4):234–244
go back to reference Gardner DJ, Han Y, Wang L (2015) Wood–plastic composite technology. Curr For Rep 1(3):139–150 Gardner DJ, Han Y, Wang L (2015) Wood–plastic composite technology. Curr For Rep 1(3):139–150
go back to reference Hassan ML, Mathew AP, Hassan EA, Fadel SM, Oksman K (2014) Improving cellulose/polypropylene nanocomposites properties with chemical modified bagasse nanofibers and maleated polypropylene. J Reinf Plast Compos 3(1):26–36CrossRef Hassan ML, Mathew AP, Hassan EA, Fadel SM, Oksman K (2014) Improving cellulose/polypropylene nanocomposites properties with chemical modified bagasse nanofibers and maleated polypropylene. J Reinf Plast Compos 3(1):26–36CrossRef
go back to reference Hiemenz PC, Lodge TP (2007) Polymer chemistry. CRC Press, Boca Raton Hiemenz PC, Lodge TP (2007) Polymer chemistry. CRC Press, Boca Raton
go back to reference Hodgkinson JM (2000) Mechanical testing of advanced fiber composites. CRC Press, Boca RatonCrossRef Hodgkinson JM (2000) Mechanical testing of advanced fiber composites. CRC Press, Boca RatonCrossRef
go back to reference Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3(3):929–980 Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3(3):929–980
go back to reference Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292(1):5–31CrossRef Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292(1):5–31CrossRef
go back to reference Khalil HA, Bhat AH, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979CrossRef Khalil HA, Bhat AH, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979CrossRef
go back to reference La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos Part A Appl Sci Manuf 42:579–588CrossRef La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos Part A Appl Sci Manuf 42:579–588CrossRef
go back to reference Landel RF, Nielsen LE (1993) Mechanical properties of polymers and composites. Marcel Dekker, New York Landel RF, Nielsen LE (1993) Mechanical properties of polymers and composites. Marcel Dekker, New York
go back to reference Liu GR (1997) A step-by-step method of rule-of-mixture of fiber-and particle-reinforced composite materials. Compos Struct 40:313–322CrossRef Liu GR (1997) A step-by-step method of rule-of-mixture of fiber-and particle-reinforced composite materials. Compos Struct 40:313–322CrossRef
go back to reference Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262CrossRef Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262CrossRef
go back to reference Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6(5):1745–1766CrossRef Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6(5):1745–1766CrossRef
go back to reference Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994CrossRef
go back to reference Peltola P, Välipakka E, Vuorinen J, Syrjälä S, Hanhi K (2006) Effect of rotational speed of twin screw extruder on the microstructure and rheological and mechanical properties of nanoclay-reinforced polypropylene nanocomposites. Polym Eng Sci 46(8):995–1000CrossRef Peltola P, Välipakka E, Vuorinen J, Syrjälä S, Hanhi K (2006) Effect of rotational speed of twin screw extruder on the microstructure and rheological and mechanical properties of nanoclay-reinforced polypropylene nanocomposites. Polym Eng Sci 46(8):995–1000CrossRef
go back to reference Peng Y, Gardner DJ, Han Y (2011) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19(1):91–102CrossRef Peng Y, Gardner DJ, Han Y (2011) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19(1):91–102CrossRef
go back to reference Peng Y, Han Y, Gardner DJ (2012) Spray-drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution. Wood Fiber Sci 44(4):448 Peng Y, Han Y, Gardner DJ (2012) Spray-drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution. Wood Fiber Sci 44(4):448
go back to reference Peng Y, Gallegos SA, Gardner DJ, Han Y, Cai Z (2014) Maleic anhydride polypropylene modified cellulose nanofibril polypropylene nanocomposites with enhanced impact strength. Polym Compos 37(3):782–793CrossRef Peng Y, Gallegos SA, Gardner DJ, Han Y, Cai Z (2014) Maleic anhydride polypropylene modified cellulose nanofibril polypropylene nanocomposites with enhanced impact strength. Polym Compos 37(3):782–793CrossRef
go back to reference Saputra H, Simonsen J, Li K (2004) Effect of extractives on the flexural properties of wood/plastic composites. Compos Interface 11(7):515–524CrossRef Saputra H, Simonsen J, Li K (2004) Effect of extractives on the flexural properties of wood/plastic composites. Compos Interface 11(7):515–524CrossRef
go back to reference Sato N, Kurauchi T, Sato S, Kamigaito O (1988) Reinforcing mechanism by small diameter fiber in short fiber composite. J Compos Mater 22(9):850–873CrossRef Sato N, Kurauchi T, Sato S, Kamigaito O (1988) Reinforcing mechanism by small diameter fiber in short fiber composite. J Compos Mater 22(9):850–873CrossRef
go back to reference Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765CrossRef Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765CrossRef
go back to reference Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef
go back to reference Suzuki K, Okumura H, Kitagawa K, Sato S, Nakagaito AN, Yano H (2013) Development of continuous process enabling nanofibrillation of pulp and melt compounding. Cellulose 20(1):201–210CrossRef Suzuki K, Okumura H, Kitagawa K, Sato S, Nakagaito AN, Yano H (2013) Development of continuous process enabling nanofibrillation of pulp and melt compounding. Cellulose 20(1):201–210CrossRef
go back to reference Suzuki K, Sato A, Okumura H, Hashimoto T, Nakagaito AN, Yano H (2014) Novel high-strength, micro fibrillated cellulose-reinforced polypropylene composites using a cationic polymer as compatibilizer. Cellulose 21(1):507–518CrossRef Suzuki K, Sato A, Okumura H, Hashimoto T, Nakagaito AN, Yano H (2014) Novel high-strength, micro fibrillated cellulose-reinforced polypropylene composites using a cationic polymer as compatibilizer. Cellulose 21(1):507–518CrossRef
go back to reference Tze WT, O’Neill SC, Tripp CP, Gardner DJ, Shaler SM (2007) Evaluation of load transfer in the cellulosic-fiber/polymer interphase using a micro-Raman tensile test. Wood Fiber Sci 39(1):184–195 Tze WT, O’Neill SC, Tripp CP, Gardner DJ, Shaler SM (2007) Evaluation of load transfer in the cellulosic-fiber/polymer interphase using a micro-Raman tensile test. Wood Fiber Sci 39(1):184–195
go back to reference Wang L, Gardner DJ (2017) Effect of fused layer modeling (FLM) processing parameters on impact strength of cellular polypropylene. Polymer 113:74–80CrossRef Wang L, Gardner DJ (2017) Effect of fused layer modeling (FLM) processing parameters on impact strength of cellular polypropylene. Polymer 113:74–80CrossRef
go back to reference Wang P, Liu J, Yu W, Zhou C (2011) Isothermal crystallization kinetics of highly filled wood plastic composites: effect of wood particles content and compatibilizer. J Macromol Sci B 50(12):2271–2289CrossRef Wang P, Liu J, Yu W, Zhou C (2011) Isothermal crystallization kinetics of highly filled wood plastic composites: effect of wood particles content and compatibilizer. J Macromol Sci B 50(12):2271–2289CrossRef
go back to reference Wang L, Sanders JE, Gardner DG, Han Y (2016) In-situ modification of cellulose nanofibrils by organosilanes during spray drying. Ind Crops Prod 93:129–135CrossRef Wang L, Sanders JE, Gardner DG, Han Y (2016) In-situ modification of cellulose nanofibrils by organosilanes during spray drying. Ind Crops Prod 93:129–135CrossRef
go back to reference Wang L, Gramlich WM, Gardner DJ (2017a) Improving the impact strength of Poly (lactic acid)(PLA) in fused layer modeling (FLM). Polymer 114:242–248CrossRef Wang L, Gramlich WM, Gardner DJ (2017a) Improving the impact strength of Poly (lactic acid)(PLA) in fused layer modeling (FLM). Polymer 114:242–248CrossRef
go back to reference Yang HS, Gardner DJ, Nader JW (2013a) Morphological properties of impact fracture surfaces and essential work of fracture analysis of cellulose nanofibril-filled polypropylene composites. J Appl Polym Sci 128(5):3064–3076CrossRef Yang HS, Gardner DJ, Nader JW (2013a) Morphological properties of impact fracture surfaces and essential work of fracture analysis of cellulose nanofibril-filled polypropylene composites. J Appl Polym Sci 128(5):3064–3076CrossRef
go back to reference Yang HS, Kiziltas A, Gardner DJ (2013b) Thermal analysis and crystallinity study of cellulose nanofibril-filled polypropylene composites. J Therm Anal Calorim 113(2):673–682CrossRef Yang HS, Kiziltas A, Gardner DJ (2013b) Thermal analysis and crystallinity study of cellulose nanofibril-filled polypropylene composites. J Therm Anal Calorim 113(2):673–682CrossRef
Metadata
Title
Mechanisms contributing to mechanical property changes in composites of polypropylene reinforced with spray-dried cellulose nanofibrils
Authors
Lu Wang
Alec W. Roach
Douglas J. Gardner
Yousoo Han
Publication date
08-11-2017
Publisher
Springer Netherlands
Published in
Cellulose / Issue 1/2018
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-017-1556-7

Other articles of this Issue 1/2018

Cellulose 1/2018 Go to the issue