Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 9/2021

05-04-2021

Morphology, structural and photoluminescence properties of shaping triple semiconductor YxCoO:ZrO2 nanostructures

Authors: Vinayak Adimule, B. C. Yallur, Debdas Bhowmik, Adarsha Haramballi Jagadeesha Gowda

Published in: Journal of Materials Science: Materials in Electronics | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present investigation, YxCoO:ZrO2 (x = 0.1, 0.3, 0.4) nanostructures (NS) are synthesized by co-precipitation and surface reduction methods using triethanol amine as surfactant and hydrazine hydrate as reducing agent. Triple-shaped semiconductor crystal features, morphology, optical absorptivity and chemical composition are determined by XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy), UV–Vis and X-ray photoelectron spectroscopy. XRD patterns revealed mixed phase of tetragonal and cubic structure of YxCoO: ZrO2 with less impurity peaks. SEM morphology indicates nanoparticles (NPs) of YxCoO:ZrO2 spherical in nature with particle agglomerations. Average Grain size, grain boundary and interpore diameter were found to be ~ 55 nm, ~ 78 nm and ~ 115 nm, respectively. FTIR spectra of YxCoO:ZrO2 (0 ≤ x ≤ 0.4) show stretching and bending peaks at ~ 533/cm (O–Y–O bond), ~ 1024/cm (Zr–O–Zr bond), broad peak at ~ 3319/cm (Y–OH) and optical absorptivity of YxCoO:ZrO2 (0 ≤ x ≤ 0.4) with λmax spread over 286 nm to 270 nm, and absorption edges appeared in between 189 and 254 nm. Chemical compositional analysis exhibited binding energies of singlet O1s at 529.8 eV, Y 3d 5/2 and Y 3d3/2 observed at 157.8 eV and 163.9 eV, respectively, while Zr 3d5/2 and Zr 3d3/2 are observed at 180.4 eV and 182.7 eV. Photoluminescence spectrum (PL) of YxCoOZrO2 NS exhibit peaks centred around ~ 455 nm (UV region) in case of Y0.4Co0.5OZr0.1O2 NS and for Y0.3Co0.5OZr0.2O2 NS ~ 538 nm (visible region) with various Y-, O- and Co-related native defects. Emission band was observed at UV region with ~ 415 nm to ~ 480 nm broad peak (Y0.4Co0.5OZr0.1O2 NS, λexcitation = 380 nm) and  ~ 502 nm to ~ 582 nm in case of Y0.3Co0.5OZr0.2O2 NS with λexcitation = 410 nm. PL emission spectra of YxCoO:ZrO2 have two emission peaks centred at ~ 455 nm and ~ 538 nm with emissions bands with blue and green wavelengths. The transitions can be ascertained with shielding of 4f shells of Y+3 ions by 6s, 5d shells by the interaction of the other Y+3 ions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
18.
go back to reference Z.G. Bai, D.P. Yu, J.J. Wang, Y.H. Zou, W. Qian, J.S. Fu, S.Q. Feng, J. Xu, L.P. You, Mater. Sci. Eng. B (2000) Z.G. Bai, D.P. Yu, J.J. Wang, Y.H. Zou, W. Qian, J.S. Fu, S.Q. Feng, J. Xu, L.P. You, Mater. Sci. Eng. B (2000)
37.
go back to reference T. Geetha, T. Thilagavathi, J. Nanomater. Biostruct. (2010) T. Geetha, T. Thilagavathi, J. Nanomater. Biostruct. (2010)
42.
go back to reference S. Sayan, D. C.Horowitz, N. V. Nguyen, and J. R. Ehrsteina, J. Vac. Sci. Technol. (2008) S. Sayan, D. C.Horowitz, N. V. Nguyen, and J. R. Ehrsteina, J. Vac. Sci. Technol. (2008)
53.
go back to reference S.A. David, C. Vedhi, Int. J. Chem. Tech. Res. (2017) S.A. David, C. Vedhi, Int. J. Chem. Tech. Res. (2017)
62.
go back to reference S.A. Makhlouf, J. Magn. Magn. Mater. (2002) S.A. Makhlouf, J. Magn. Magn. Mater. (2002)
65.
go back to reference H. Wang, C.K. Duan, P.A. Tanner, J. Phys. Chem. C (2008) H. Wang, C.K. Duan, P.A. Tanner, J. Phys. Chem. C (2008)
66.
go back to reference E. Orhan, M.A. Santos, M.A.M.A. Maurera, F.M. Pontes, C.O.P. Santos, A.G. Souza, J.A. Varela, P.S. Pizani, E. Longo, Chem. Phys. (2005) E. Orhan, M.A. Santos, M.A.M.A. Maurera, F.M. Pontes, C.O.P. Santos, A.G. Souza, J.A. Varela, P.S. Pizani, E. Longo, Chem. Phys. (2005)
67.
go back to reference S.J. Chen, J.H. Zhou, X.T. Chen, J. Li, L.H. Li, J.M. Hong, Z. Xue, X.Z. You, Chem. Phys. Lett. (2003) S.J. Chen, J.H. Zhou, X.T. Chen, J. Li, L.H. Li, J.M. Hong, Z. Xue, X.Z. You, Chem. Phys. Lett. (2003)
69.
go back to reference H. Chen, J. Shi, Y. Yang, Y. Li, D.Yan and C. Shi, (2002) Appl Phys Lett. H. Chen, J. Shi, Y. Yang, Y. Li, D.Yan and C. Shi, (2002) Appl Phys Lett.
70.
go back to reference D.T.J. Hurle, Handbook of Crystal Growth (North-Holland, Amsterdam, 1993). D.T.J. Hurle, Handbook of Crystal Growth (North-Holland, Amsterdam, 1993).
71.
go back to reference K. Park, J.S. Lee, M.Y. Sung, S. Kim, Jpn. J. Appl. Phys. (2002) K. Park, J.S. Lee, M.Y. Sung, S. Kim, Jpn. J. Appl. Phys. (2002)
72.
go back to reference S.A. Studenikin, M. Cocivera, J. Appl. Phys. (2002) S.A. Studenikin, M. Cocivera, J. Appl. Phys. (2002)
74.
go back to reference M.D.H. Alonso, A.B. Hungrıa, A.M. Arias, J.M. Coronado, J.C. Conesa, J. Soria, M. Fernaındez-Garcıa, Phys. Chem. Chem. Phys. (2004) M.D.H. Alonso, A.B. Hungrıa, A.M. Arias, J.M. Coronado, J.C. Conesa, J. Soria, M. Fernaındez-Garcıa, Phys. Chem. Chem. Phys. (2004)
77.
go back to reference K.K. Szkaradek, J. Achiev Mater. Manuf. Eng. (2006) K.K. Szkaradek, J. Achiev Mater. Manuf. Eng. (2006)
Metadata
Title
Morphology, structural and photoluminescence properties of shaping triple semiconductor YxCoO:ZrO2 nanostructures
Authors
Vinayak Adimule
B. C. Yallur
Debdas Bhowmik
Adarsha Haramballi Jagadeesha Gowda
Publication date
05-04-2021
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 9/2021
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-05845-2

Other articles of this Issue 9/2021

Journal of Materials Science: Materials in Electronics 9/2021 Go to the issue