Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 9/2021

15-04-2021 | Review

Thermal interface materials for cooling microelectronic systems: present status and future challenges

Authors: Ramakrishna Devananda Pathumudy, K. Narayan Prabhu

Published in: Journal of Materials Science: Materials in Electronics | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Thermal management has become a challenging aspect particularly in the field of microelectronics due to rapid miniaturization and massive scale integration. This has resulted in the generation of enormous amounts of heat that needs to be efficiently transferred from microelectronic devices to ensure longer life cycles. The efficient transfer of heat offers advantages such as achieving higher operating temperatures and prevents component failure. A device engineer has to, therefore, identify methods that would facilitate the efficient transfer of heat from the systems. The existence of an interface between the heat source and the heat sink impedes the efficient transfer of heat. Over the years, researchers have identified techniques that could be employed to reduce the interface impediments. Among these techniques, the application of thermal interface materials (TIMs) at the interface is the most promising and has become an integral part of applications where an efficient transfer of heat across interfaces is desirable. In the present paper, the assessment of contact resistance, properties of interface materials and thermal management of microelectronic devices using TIMs are discussed. The present status of TIMs is critically reviewed and the future challenges are highlighted.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y.J. Dai, J.J. Gou, X.J. Ren, F. Bai, W.Z. Fang, W.Q. Tao, A test-validated prediction model of thermal contact resistance for Ti-6Al-4V alloy. Appl. Energy 228(2017), 1601–1617 (2018)CrossRef Y.J. Dai, J.J. Gou, X.J. Ren, F. Bai, W.Z. Fang, W.Q. Tao, A test-validated prediction model of thermal contact resistance for Ti-6Al-4V alloy. Appl. Energy 228(2017), 1601–1617 (2018)CrossRef
2.
go back to reference C.K. Leong, D.D.L. Chung, Carbon black dispersions as thermal pastes that surpass solder in providing high thermal contact conductance. Carbon N. Y. 41(13), 2459–2469 (2003)CrossRef C.K. Leong, D.D.L. Chung, Carbon black dispersions as thermal pastes that surpass solder in providing high thermal contact conductance. Carbon N. Y. 41(13), 2459–2469 (2003)CrossRef
3.
go back to reference V. Sartre, M. Lallemand, Enhancement of thermal contact conductance for electronic systems. Appl. Therm. Eng. 21(2), 221–235 (2001)CrossRef V. Sartre, M. Lallemand, Enhancement of thermal contact conductance for electronic systems. Appl. Therm. Eng. 21(2), 221–235 (2001)CrossRef
4.
go back to reference C.K. Leong, D.D.L. Chung, Carbon black dispersions and carbon–silver combinations as thermal pastes that surpass commercial silver and ceramic pastes in providing high thermal contact conductance. Carbon 42(11), 2323–2327 (2004)CrossRef C.K. Leong, D.D.L. Chung, Carbon black dispersions and carbon–silver combinations as thermal pastes that surpass commercial silver and ceramic pastes in providing high thermal contact conductance. Carbon 42(11), 2323–2327 (2004)CrossRef
5.
go back to reference Y. Xu, X. Luo, D.D.L. Chung, Sodium silicate based thermal interface material for high thermal contact conductance sodium. Trans. ASME 122(June), 128–131 (2000) Y. Xu, X. Luo, D.D.L. Chung, Sodium silicate based thermal interface material for high thermal contact conductance sodium. Trans. ASME 122(June), 128–131 (2000)
6.
go back to reference R.P. Devananda, K.N. Prabhu, The effect of load and addition of MWCNTs on silicone based TIMs on thermal contact heat transfer across Cu/Cu interface. Mater. Res. Exp. 6, 1165 (2019) R.P. Devananda, K.N. Prabhu, The effect of load and addition of MWCNTs on silicone based TIMs on thermal contact heat transfer across Cu/Cu interface. Mater. Res. Exp. 6, 1165 (2019)
7.
go back to reference W. Yu, H. Xie, L. Yin, J. Zhao, L. Xia, L. Chen, Exceptionally high thermal conductivity of thermal grease: synergistic effects of graphene and alumina. Int. J. Therm. Sci. 91, 76–82 (2015)CrossRef W. Yu, H. Xie, L. Yin, J. Zhao, L. Xia, L. Chen, Exceptionally high thermal conductivity of thermal grease: synergistic effects of graphene and alumina. Int. J. Therm. Sci. 91, 76–82 (2015)CrossRef
8.
go back to reference K. Hu, D.D.L. Chung, Flexible graphite modified by carbon black paste for use as a thermal interface material. Carbon N. Y. 49(4), 1075–1086 (2011)CrossRef K. Hu, D.D.L. Chung, Flexible graphite modified by carbon black paste for use as a thermal interface material. Carbon N. Y. 49(4), 1075–1086 (2011)CrossRef
9.
go back to reference P. Zhang, Y.M. Xuan, Q. Li, A high-precision instrumentation of measuring thermal contact resistance using reversible heat flux. Exp. Therm. Fluid Sci. 54, 204–211 (2014)CrossRef P. Zhang, Y.M. Xuan, Q. Li, A high-precision instrumentation of measuring thermal contact resistance using reversible heat flux. Exp. Therm. Fluid Sci. 54, 204–211 (2014)CrossRef
10.
go back to reference F. Sarvar, D.C. Whalley, P.P. Conway, Thermal interface materials—a review of the state of the art. 1st Electron. Syst. Technol. Conf., vol. 2 (IEEE, 2006), pp. 1292–1302 F. Sarvar, D.C. Whalley, P.P. Conway, Thermal interface materials—a review of the state of the art. 1st Electron. Syst. Technol. Conf., vol. 2 (IEEE, 2006), pp. 1292–1302
11.
go back to reference E. Gmelin, M. Asen-Palmer, M. Reuther, R. Villar, Thermal boundary resistance of mechanical contacts between solids at sub-ambient temperatures. J. Phys. D Appl. Phys. 32(6), R19–R43 (1999)CrossRef E. Gmelin, M. Asen-Palmer, M. Reuther, R. Villar, Thermal boundary resistance of mechanical contacts between solids at sub-ambient temperatures. J. Phys. D Appl. Phys. 32(6), R19–R43 (1999)CrossRef
12.
go back to reference J. Hansson, T.M.J. Nilsson, L. Ye, J. Liu, Novel nanostructured thermal interface materials: a review. Int. Mater. Rev. 63(1), 22–45 (2018)CrossRef J. Hansson, T.M.J. Nilsson, L. Ye, J. Liu, Novel nanostructured thermal interface materials: a review. Int. Mater. Rev. 63(1), 22–45 (2018)CrossRef
13.
go back to reference C.K. Roy, S. Bhavnani, M.C. Hamilton, R.W. Johnson, R.W. Knight, D.K. Harris, Thermal performance of low melting temperature alloys at the interface between dissimilar materials. Appl. Therm. Eng. 99, 72–79 (2016)CrossRef C.K. Roy, S. Bhavnani, M.C. Hamilton, R.W. Johnson, R.W. Knight, D.K. Harris, Thermal performance of low melting temperature alloys at the interface between dissimilar materials. Appl. Therm. Eng. 99, 72–79 (2016)CrossRef
14.
go back to reference N. Nagabandi, C. Yegin, J.K. Oh, M. Akbulut, Metallic nanocomposites as next-generation thermal interface materials. Proceedings of 16th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems ITherm 2017, no. September, pp. 400–406, 2017. N. Nagabandi, C. Yegin, J.K. Oh, M. Akbulut, Metallic nanocomposites as next-generation thermal interface materials. Proceedings of 16th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems ITherm 2017, no. September, pp. 400–406, 2017.
15.
go back to reference J.P. Gwinn, R.L. Webb, Performance and testing of thermal interface materials. Microelectron. J. 34(3), 215–222 (2003)CrossRef J.P. Gwinn, R.L. Webb, Performance and testing of thermal interface materials. Microelectron. J. 34(3), 215–222 (2003)CrossRef
16.
go back to reference Y.S. Choi, M.S. Kim, Experiments on thermal contact conductance between metals below 100 K. AIP Conf. Proc. 1573(February), 1070–1077 (2014)CrossRef Y.S. Choi, M.S. Kim, Experiments on thermal contact conductance between metals below 100 K. AIP Conf. Proc. 1573(February), 1070–1077 (2014)CrossRef
17.
go back to reference W.E. Stewart Jr., Determination of thermal contact resistance between metals using a pulse technique. Doctoral Dissertation submitted to University of Missouri - Rolla, Department of Mechanical and Aerospace Engineering (1972) W.E. Stewart Jr., Determination of thermal contact resistance between metals using a pulse technique. Doctoral Dissertation submitted to University of Missouri - Rolla, Department of Mechanical and Aerospace Engineering (1972)
18.
go back to reference M.M. Yovanovich, J.R. Culham, P. Teertstra, Calculating interface resistance. Electron. Cool. 3(2), 24–29 (1997) M.M. Yovanovich, J.R. Culham, P. Teertstra, Calculating interface resistance. Electron. Cool. 3(2), 24–29 (1997)
19.
go back to reference M.Z. Abdullah, Y.C. Yau, Z.A.Z. Alauddin, K.N. Seetharamu, Effects of pressure on thermal contact resistance for rough mating surfaces. ASEAN J. Sci. Technol. Dev. 18(2), 29–35 (2017)CrossRef M.Z. Abdullah, Y.C. Yau, Z.A.Z. Alauddin, K.N. Seetharamu, Effects of pressure on thermal contact resistance for rough mating surfaces. ASEAN J. Sci. Technol. Dev. 18(2), 29–35 (2017)CrossRef
20.
go back to reference Y. Xu, C.K. Leong, D.D.L. Chung, Carbon nanotube thermal pastes for improving thermal contacts. J. Electron. Mater. 36(9), 1181–1187 (2007)CrossRef Y. Xu, C.K. Leong, D.D.L. Chung, Carbon nanotube thermal pastes for improving thermal contacts. J. Electron. Mater. 36(9), 1181–1187 (2007)CrossRef
21.
go back to reference J. Liu, H. Feng, X. Luo, R. Hu, S. Liu, A simple setup to test thermal contact resistance between interfaces of two contacted solid materials. Proceedings—2010 11th International Conference on Electronic Packaging Technology & High Density Packaging. ICEPT-HDP 2010, pp. 116–120, 2010 J. Liu, H. Feng, X. Luo, R. Hu, S. Liu, A simple setup to test thermal contact resistance between interfaces of two contacted solid materials. Proceedings—2010 11th International Conference on Electronic Packaging Technology & High Density Packaging. ICEPT-HDP 2010, pp. 116–120, 2010
22.
go back to reference P. Zhang, J. Zeng, S. Zhai, Y. Xian, D. Yang, Q. Li, Thermal properties of graphene filled polymer composite thermal interface materials. Macromol. Mater. Eng. 302(9), 1–18 (2017)CrossRef P. Zhang, J. Zeng, S. Zhai, Y. Xian, D. Yang, Q. Li, Thermal properties of graphene filled polymer composite thermal interface materials. Macromol. Mater. Eng. 302(9), 1–18 (2017)CrossRef
23.
go back to reference A. Tariq, M. Asif, Experimental investigation of thermal contact conductance for nominally flat metallic contact. Heat Mass Transf. und Stoffuebertragung 52(2), 291–307 (2016)CrossRef A. Tariq, M. Asif, Experimental investigation of thermal contact conductance for nominally flat metallic contact. Heat Mass Transf. und Stoffuebertragung 52(2), 291–307 (2016)CrossRef
24.
go back to reference S.R. Narayana, P.K. Narayan, Effect of load and interface materials on thermal contact resistance between similar and dissimilar materials. Appl. Mech. Mater. 592–594, 1493–1497 (2014)CrossRef S.R. Narayana, P.K. Narayan, Effect of load and interface materials on thermal contact resistance between similar and dissimilar materials. Appl. Mech. Mater. 592–594, 1493–1497 (2014)CrossRef
25.
go back to reference M. Bahrami, M.M. Yovanovich, J.R. Culham, Thermal contact resistance at low contact pressure: effect of elastic deformation. Int. J. Heat Mass Transf. 48(16), 3284–3293 (2005)CrossRef M. Bahrami, M.M. Yovanovich, J.R. Culham, Thermal contact resistance at low contact pressure: effect of elastic deformation. Int. J. Heat Mass Transf. 48(16), 3284–3293 (2005)CrossRef
26.
go back to reference X. Luo, D.D.L. Chung, Effect of the thickness of a thermal interface material (solder) on heat transfer between copper surfaces. Int. J. Microcircuits Electron. Packag. 24(2), 141–147 (2001) X. Luo, D.D.L. Chung, Effect of the thickness of a thermal interface material (solder) on heat transfer between copper surfaces. Int. J. Microcircuits Electron. Packag. 24(2), 141–147 (2001)
27.
go back to reference M.A. Raza, A. Westwood, C. Stirling, Comparison of carbon nanofiller-based polymer composite adhesives and pastes for thermal interface applications. Mater. Des. 85, 67–75 (2015)CrossRef M.A. Raza, A. Westwood, C. Stirling, Comparison of carbon nanofiller-based polymer composite adhesives and pastes for thermal interface applications. Mater. Des. 85, 67–75 (2015)CrossRef
28.
go back to reference M. Saadah, E. Hernandez, A.A. Balandin, Thermal management of concentrated multi-junction solar cells with graphene-enhanced thermal interface materials. Appl. Sci. 7(6), 589 (2017)CrossRef M. Saadah, E. Hernandez, A.A. Balandin, Thermal management of concentrated multi-junction solar cells with graphene-enhanced thermal interface materials. Appl. Sci. 7(6), 589 (2017)CrossRef
29.
go back to reference Y. Aoyagi, C.K. Leong, D.D.L. Chung, Polyol- based phase-change thermal interface materials. J. Electron. Mater. 35(3), 416–424 (2006)CrossRef Y. Aoyagi, C.K. Leong, D.D.L. Chung, Polyol- based phase-change thermal interface materials. J. Electron. Mater. 35(3), 416–424 (2006)CrossRef
30.
go back to reference R. Prasher, Thermal interface materials: historical perspective, status, and future directions. Proc. IEEE 94(8), 1571–1586 (2006)CrossRef R. Prasher, Thermal interface materials: historical perspective, status, and future directions. Proc. IEEE 94(8), 1571–1586 (2006)CrossRef
31.
go back to reference R.S. Prasher, J. Shipley, S. Prstic, P. Koning, J.L. Wang, Thermal resistance of particle laden polymeric thermal interface materials. J. Heat Transf. 125(6), 1170–1177 (2003)CrossRef R.S. Prasher, J. Shipley, S. Prstic, P. Koning, J.L. Wang, Thermal resistance of particle laden polymeric thermal interface materials. J. Heat Transf. 125(6), 1170–1177 (2003)CrossRef
32.
go back to reference Y. Martin, T. Van Kessel, Y. Heights, Y. Martin, T. Van Kessel, IBM research report high performance liquid metal thermal interface for large volume production for large volume production, vol. 24372 (IBM, 2007) Y. Martin, T. Van Kessel, Y. Heights, Y. Martin, T. Van Kessel, IBM research report high performance liquid metal thermal interface for large volume production for large volume production, vol. 24372 (IBM, 2007)
33.
go back to reference D.D.L. Chung, Thermal interface materials. J. Mater. Eng. Perform. 10(1), 56–59 (2001)CrossRef D.D.L. Chung, Thermal interface materials. J. Mater. Eng. Perform. 10(1), 56–59 (2001)CrossRef
34.
go back to reference H. Yu, L. Li, T. Kido, G. Xi, G. Xu, F. Guo, Thermal and insulating properties of epoxy/aluminum nitride composites used for thermal interface material. J. Appl. Polym. Sci. 124, 669–677 (2011)CrossRef H. Yu, L. Li, T. Kido, G. Xi, G. Xu, F. Guo, Thermal and insulating properties of epoxy/aluminum nitride composites used for thermal interface material. J. Appl. Polym. Sci. 124, 669–677 (2011)CrossRef
35.
go back to reference L.S. Fletcher, A review of thermal enhancement techniques for electronic systems. IEEE Trans. Comp. Hybrid. Manuf. Technol. 13(4), 1012–1021 (1990)CrossRef L.S. Fletcher, A review of thermal enhancement techniques for electronic systems. IEEE Trans. Comp. Hybrid. Manuf. Technol. 13(4), 1012–1021 (1990)CrossRef
36.
go back to reference Y. Gao, J. Liu, Gallium-based thermal interface material with high compliance and wettability. Appl. Phys. A Mater. Sci. Process. 107(3), 701–708 (2012)CrossRef Y. Gao, J. Liu, Gallium-based thermal interface material with high compliance and wettability. Appl. Phys. A Mater. Sci. Process. 107(3), 701–708 (2012)CrossRef
37.
go back to reference Y. Ji, G. Li, C. Chang, Y. Sun, H. Ma, Investigation on carbon nanotubes as thermal interface material bonded with liquid metal alloy. J. Heat Transf. 137(9), 1–9 (2015)CrossRef Y. Ji, G. Li, C. Chang, Y. Sun, H. Ma, Investigation on carbon nanotubes as thermal interface material bonded with liquid metal alloy. J. Heat Transf. 137(9), 1–9 (2015)CrossRef
38.
go back to reference E. Yang, H. Guo, J. Guo, J. Shang, M. Wang, Thermal performance of low-melting-temperature alloy thermal interface materials. Acta Metall. Sin. (Engl. Lett.) 27(2), 290–294 (2014)CrossRef E. Yang, H. Guo, J. Guo, J. Shang, M. Wang, Thermal performance of low-melting-temperature alloy thermal interface materials. Acta Metall. Sin. (Engl. Lett.) 27(2), 290–294 (2014)CrossRef
39.
go back to reference H. Yan, J. Yan, G. Zhoa, Heat transfer of liquid metal alloy on copper plate deposited with film of different surface free energy. Chin. Phys. B 28(11), 114401 (2019)CrossRef H. Yan, J. Yan, G. Zhoa, Heat transfer of liquid metal alloy on copper plate deposited with film of different surface free energy. Chin. Phys. B 28(11), 114401 (2019)CrossRef
40.
go back to reference R. Skuriat, J.F. Li, P.A. Agyakwa, N. Mattey, P. Evans, C.M. Johnson, Degradation of thermal interface materials for high-temperature power electronics applications. Microelectron. Reliab. 53(12), 1933–1942 (2013)CrossRef R. Skuriat, J.F. Li, P.A. Agyakwa, N. Mattey, P. Evans, C.M. Johnson, Degradation of thermal interface materials for high-temperature power electronics applications. Microelectron. Reliab. 53(12), 1933–1942 (2013)CrossRef
41.
go back to reference G. Becker, C. Lee, Z. Lin, Thermal in advanced chips conductivity. Adv. Packag. 14(7), 14–16 (2005) G. Becker, C. Lee, Z. Lin, Thermal in advanced chips conductivity. Adv. Packag. 14(7), 14–16 (2005)
42.
go back to reference A.L. Peterson, Silicones with improved thermal conductivity for thermal management in electronic Packaging. 40th Conference Proceedings on Electronic Components and Technology. IEEE, pp. 613–619, 1990 A.L. Peterson, Silicones with improved thermal conductivity for thermal management in electronic Packaging. 40th Conference Proceedings on Electronic Components and Technology. IEEE, pp. 613–619, 1990
43.
go back to reference W.J. Kusuma, Fadarina, A. Hasan, Sodium silicate composite filled by zinc oxide as low resistance thermal grease. J. Phys. Conf. Ser. 1167(1), (2019)CrossRef W.J. Kusuma, Fadarina, A. Hasan, Sodium silicate composite filled by zinc oxide as low resistance thermal grease. J. Phys. Conf. Ser. 1167(1), (2019)CrossRef
44.
go back to reference J.S. Lewis, T. Perrier, A. Mohammadzadeh, F. Kargar, A.A. Balandin, Power cycling and reliability testing of epoxy-based graphene thermal interface materials. C J. Carbon Res. 6(2), 26 (2020)CrossRef J.S. Lewis, T. Perrier, A. Mohammadzadeh, F. Kargar, A.A. Balandin, Power cycling and reliability testing of epoxy-based graphene thermal interface materials. C J. Carbon Res. 6(2), 26 (2020)CrossRef
45.
go back to reference K.C. Otiaba, N.N. Ekere, R.S. Bhatti, S. Mallik, M.O. Alam, E.H. Amalu, Thermal interface materials for automotive electronic control unit: trends, technology and R&D challenges. Microelectron. Reliab. 51(12), 2031–2043 (2011)CrossRef K.C. Otiaba, N.N. Ekere, R.S. Bhatti, S. Mallik, M.O. Alam, E.H. Amalu, Thermal interface materials for automotive electronic control unit: trends, technology and R&D challenges. Microelectron. Reliab. 51(12), 2031–2043 (2011)CrossRef
46.
go back to reference S. Mallik, N. Ekere, C. Best, R. Bhatti, Investigation of thermal management materials for automotive electronic control units. Appl. Therm. Eng. 31(2–3), 355–362 (2011)CrossRef S. Mallik, N. Ekere, C. Best, R. Bhatti, Investigation of thermal management materials for automotive electronic control units. Appl. Therm. Eng. 31(2–3), 355–362 (2011)CrossRef
47.
go back to reference M.A. Raza, A. Westwood, Thermal contact resistance of various carbon nanomaterial-based epoxy composites developed for thermal interface applications. J. Mater. Sci. Mater. Electron. 30(11), 10630–10638 (2019)CrossRef M.A. Raza, A. Westwood, Thermal contact resistance of various carbon nanomaterial-based epoxy composites developed for thermal interface applications. J. Mater. Sci. Mater. Electron. 30(11), 10630–10638 (2019)CrossRef
48.
go back to reference S. Wang, Y. Cheng, R. Wang, J. Sun, L. Gao, Highly thermal conductive copper nanowire composites with ultralow loading: toward applications as thermal interface materials. ACS Appl. Mater. Interfaces 6(9), 6481–6486 (2014)CrossRef S. Wang, Y. Cheng, R. Wang, J. Sun, L. Gao, Highly thermal conductive copper nanowire composites with ultralow loading: toward applications as thermal interface materials. ACS Appl. Mater. Interfaces 6(9), 6481–6486 (2014)CrossRef
49.
go back to reference E.D. Veilleux, Use of thermal greases to conduct heat across sheet-metal interfaces. J. Spacecr. Rockets 5(10), 1238–1240 (1968)CrossRef E.D. Veilleux, Use of thermal greases to conduct heat across sheet-metal interfaces. J. Spacecr. Rockets 5(10), 1238–1240 (1968)CrossRef
50.
go back to reference C.P. Chiu, G.L. Solbrekken, Y.D. Chung, Thermal modeling of grease-type interface material in PPGA application. Annual IEEE. Semiconductor Thermal Measurement and Management Symposium, pp. 57–63, 1997. C.P. Chiu, G.L. Solbrekken, Y.D. Chung, Thermal modeling of grease-type interface material in PPGA application. Annual IEEE. Semiconductor Thermal Measurement and Management Symposium, pp. 57–63, 1997.
51.
go back to reference J. Due, A.J. Robinson, Reliability of thermal interface materials: a review. Appl. Therm. Eng. 50(1), 455–463 (2013)CrossRef J. Due, A.J. Robinson, Reliability of thermal interface materials: a review. Appl. Therm. Eng. 50(1), 455–463 (2013)CrossRef
52.
go back to reference A. Gowda, D. Esler, S.N. Paisner, S. Tonapi, K. Nagarkar, K. Srihari, Reliability testing of silicone-based thermal greases. Department of Systems Science and Industrial Engineering. Semi-Therm, 2005 A. Gowda, D. Esler, S.N. Paisner, S. Tonapi, K. Nagarkar, K. Srihari, Reliability testing of silicone-based thermal greases. Department of Systems Science and Industrial Engineering. Semi-Therm, 2005
53.
go back to reference R. Viswanath, V. Wakharkar, A. Watwe, V. Lebonheur, Technology and Manufacturing Group, Intel Corp, Thermal performance challenges from silicon to systems. Intel Techol. J. Q3, 1–16 (2000) R. Viswanath, V. Wakharkar, A. Watwe, V. Lebonheur, Technology and Manufacturing Group, Intel Corp, Thermal performance challenges from silicon to systems. Intel Techol. J. Q3, 1–16 (2000)
54.
go back to reference C.K. Roy, S. Bhavani, M.C. Hamilton, R.W. Johnson, J.L. Nguyen, R.W. Knight, D.K. Harris et al., Investigation into the application of low melting temperature alloys as wet thermal interface materials. Int. J. Heat Mass Transf. 85, 996–1002 (2015)CrossRef C.K. Roy, S. Bhavani, M.C. Hamilton, R.W. Johnson, J.L. Nguyen, R.W. Knight, D.K. Harris et al., Investigation into the application of low melting temperature alloys as wet thermal interface materials. Int. J. Heat Mass Transf. 85, 996–1002 (2015)CrossRef
55.
go back to reference A. Gowda, D. Esler, S. Tonapi, K. Nagarkar, K. Srihari, Voids in thermal interface material layers and their effect on thermal performance. Proceedings of 6th Electronics Packaging Technology Conference EPTC 2004, pp. 41–46, 2004 A. Gowda, D. Esler, S. Tonapi, K. Nagarkar, K. Srihari, Voids in thermal interface material layers and their effect on thermal performance. Proceedings of 6th Electronics Packaging Technology Conference EPTC 2004, pp. 41–46, 2004
56.
go back to reference B. Snaith, P.W. O’Callaghan, S.D. Probert, Use of Interstitial Materials for Thermal Contact Conductance Control. AIAA Paper, 1984. B. Snaith, P.W. O’Callaghan, S.D. Probert, Use of Interstitial Materials for Thermal Contact Conductance Control. AIAA Paper, 1984.
57.
go back to reference H. Chen, H. Wei, M. Chen, F. Meng, H. Li, Q. Li, Enhancing the effectiveness of silicone thermal grease by the addition of functionalized carbon nanotubes. Appl. Surf. Sci. 283, 525–531 (2013)CrossRef H. Chen, H. Wei, M. Chen, F. Meng, H. Li, Q. Li, Enhancing the effectiveness of silicone thermal grease by the addition of functionalized carbon nanotubes. Appl. Surf. Sci. 283, 525–531 (2013)CrossRef
58.
go back to reference H. Yu, L. Li, Y. Zhang, Silver nanoparticle-based thermal interface materials with ultra-low thermal resistance for power electronics applications. Scr. Mater. 66(11), 931–934 (2012)CrossRef H. Yu, L. Li, Y. Zhang, Silver nanoparticle-based thermal interface materials with ultra-low thermal resistance for power electronics applications. Scr. Mater. 66(11), 931–934 (2012)CrossRef
59.
go back to reference K. Ma, J. Liu, Liquid metal cooling in thermal management of computer chips. Front. Energy Power Eng. China 1(4), 384–402 (2007)CrossRef K. Ma, J. Liu, Liquid metal cooling in thermal management of computer chips. Front. Energy Power Eng. China 1(4), 384–402 (2007)CrossRef
60.
go back to reference R.L. Webb, J.P. Gwinn, Low melting point thermal interface material. Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic System ITHERM, vol. 2002, issue 814, pp. 671–676, 2002 R.L. Webb, J.P. Gwinn, Low melting point thermal interface material. Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic System ITHERM, vol. 2002, issue 814, pp. 671–676, 2002
61.
go back to reference A. Hamdan, A. McLanahan, R. Richards, C. Richards, Characterization of a liquid–metal microdroplet thermal interface material. Exp. Therm. Fluid Sci. 35(7), 1250–1254 (2011)CrossRef A. Hamdan, A. McLanahan, R. Richards, C. Richards, Characterization of a liquid–metal microdroplet thermal interface material. Exp. Therm. Fluid Sci. 35(7), 1250–1254 (2011)CrossRef
62.
go back to reference R.F. Hill, J.L. Strader, Practical utilization of low melting alloy thermal interface materials. Annual IEEE Semiconductor Thermal Measurement and Management Symposium, vol. 2006, pp. 23–27, 2006 R.F. Hill, J.L. Strader, Practical utilization of low melting alloy thermal interface materials. Annual IEEE Semiconductor Thermal Measurement and Management Symposium, vol. 2006, pp. 23–27, 2006
63.
go back to reference C.G. Macris, T.R. Sanderson, R.G. Ebel, C.B. Leyerle, Performance, reliability, and approaches using a low melt alloy as a thermal interface material. International Microelectronics and Packaging Society, pp. 1–6, 2004. C.G. Macris, T.R. Sanderson, R.G. Ebel, C.B. Leyerle, Performance, reliability, and approaches using a low melt alloy as a thermal interface material. International Microelectronics and Packaging Society, pp. 1–6, 2004.
64.
go back to reference R.S. Cook, K.H. Token, R.L. Calkins, A novel concept for reducing thermal contact resistance. J. Spacecr. Rockets 21(1), 122–124 (1984)CrossRef R.S. Cook, K.H. Token, R.L. Calkins, A novel concept for reducing thermal contact resistance. J. Spacecr. Rockets 21(1), 122–124 (1984)CrossRef
65.
go back to reference G. Li, Y. Ji, M. Wu, H. Ma, HT2016-7374. Proceedings of the ASME 2016 Summer Heat Transfer Conference, pp. 1–6, 2017. G. Li, Y. Ji, M. Wu, H. Ma, HT2016-7374. Proceedings of the ASME 2016 Summer Heat Transfer Conference, pp. 1–6, 2017.
66.
go back to reference Y. Ji, H. Yan, X. Xiao, J. Xu, Y. Li, C. Chang, Excellent thermal performance of gallium-based liquid metal alloy as thermal interface material between aluminum substrates. Appl. Therm. Eng. 166, 114649 (2020)CrossRef Y. Ji, H. Yan, X. Xiao, J. Xu, Y. Li, C. Chang, Excellent thermal performance of gallium-based liquid metal alloy as thermal interface material between aluminum substrates. Appl. Therm. Eng. 166, 114649 (2020)CrossRef
67.
go back to reference W.X. Chu, P.H. Tseng, C.C. Wang, Utilization of low-melting temperature alloy with confined seal for reducing thermal contact resistance. Appl. Therm. Eng. 163(April), 114438 (2019)CrossRef W.X. Chu, P.H. Tseng, C.C. Wang, Utilization of low-melting temperature alloy with confined seal for reducing thermal contact resistance. Appl. Therm. Eng. 163(April), 114438 (2019)CrossRef
68.
go back to reference H. Liu, H. Liu, Z. Lin, S. Chu, AlN/Ga-based liquid metal/PDMS ternary thermal grease for heat dissipation in electronic devices. Rare Met. Mater. Eng. 47(9), 2668–2674 (2018)CrossRef H. Liu, H. Liu, Z. Lin, S. Chu, AlN/Ga-based liquid metal/PDMS ternary thermal grease for heat dissipation in electronic devices. Rare Met. Mater. Eng. 47(9), 2668–2674 (2018)CrossRef
69.
go back to reference J.G. Bai, Z.Z. Zhang, G.Q. Lu, D.P.H. Hasselman, Measurement of solder/copper interfacial thermal resistance by the flash technique. Int. J. Thermophys. 26(5), 1607–1615 (2005)CrossRef J.G. Bai, Z.Z. Zhang, G.Q. Lu, D.P.H. Hasselman, Measurement of solder/copper interfacial thermal resistance by the flash technique. Int. J. Thermophys. 26(5), 1607–1615 (2005)CrossRef
70.
go back to reference R. Zhang, J. Cai, Q. Wang, J. Li, Y. Hu, H. Du, L. Li, Thermal resistance analysis of Sn-Bi solder paste used as thermal interface material for power electronics applications. J. Electron. Packag. Trans. ASME 136(1), 1–5 (2014)CrossRef R. Zhang, J. Cai, Q. Wang, J. Li, Y. Hu, H. Du, L. Li, Thermal resistance analysis of Sn-Bi solder paste used as thermal interface material for power electronics applications. J. Electron. Packag. Trans. ASME 136(1), 1–5 (2014)CrossRef
71.
go back to reference D. Van Heerden, T. Rude, J. Newson, O. Knio, T.P. Weihs, D.W. Gailus, Thermal behavior of a soldered Cu-Si interface. Annual IEEE Semiconductor Thermal Measurement and Management Symposium, vol. 20, pp. 46–49, 2004 D. Van Heerden, T. Rude, J. Newson, O. Knio, T.P. Weihs, D.W. Gailus, Thermal behavior of a soldered Cu-Si interface. Annual IEEE Semiconductor Thermal Measurement and Management Symposium, vol. 20, pp. 46–49, 2004
72.
go back to reference J. Hansson, L. Ye, J. Liu, Fabrication and characterization of a carbon fiber solder composite thermal interface material. 2017 IMAPS Nordic Conference on Microelectronics Packaging (NordPac). 2017, pp. 97–100, 2017 J. Hansson, L. Ye, J. Liu, Fabrication and characterization of a carbon fiber solder composite thermal interface material. 2017 IMAPS Nordic Conference on Microelectronics Packaging (NordPac). 2017, pp. 97–100, 2017
73.
go back to reference B. Carlberg, T. Wang, J. Liu, D. Shangguan, Polymer-metal nano-composite films for thermal management. Microelectron. Int. 26(2), 28–36 (2009)CrossRef B. Carlberg, T. Wang, J. Liu, D. Shangguan, Polymer-metal nano-composite films for thermal management. Microelectron. Int. 26(2), 28–36 (2009)CrossRef
74.
go back to reference Y. Gao, X. Wang, J. Liu, Q. Fang, Investigation on the optimized binary and ternary gallium alloy as thermal interface materials. J. Electron. Packag. Trans. ASME 139(1), 1–8 (2017)CrossRef Y. Gao, X. Wang, J. Liu, Q. Fang, Investigation on the optimized binary and ternary gallium alloy as thermal interface materials. J. Electron. Packag. Trans. ASME 139(1), 1–8 (2017)CrossRef
75.
go back to reference K. Swamy, Satyanarayan, Study on thermal resistance of brass with and without coating of metallic surface. Mater. Today Proc., vol. 35 (2020), pp. 335–339 K. Swamy, Satyanarayan, Study on thermal resistance of brass with and without coating of metallic surface. Mater. Today Proc., vol. 35 (2020), pp. 335–339
76.
go back to reference X. Hu, L. Jiang, K.E. Goodson, Thermal characterization of eutectic alloy thermal interface materials with void-like inclusions. Twentieth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, vol. 20, no. 650 (2004), pp. 98–103 X. Hu, L. Jiang, K.E. Goodson, Thermal characterization of eutectic alloy thermal interface materials with void-like inclusions. Twentieth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, vol. 20, no. 650 (2004), pp. 98–103
77.
go back to reference B. Rauch, Understanding the performance characteristics of phase-change thermal interface materials. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, vol. 1 (2000), pp. 42–47 B. Rauch, Understanding the performance characteristics of phase-change thermal interface materials. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, vol. 1 (2000), pp. 42–47
78.
go back to reference P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, A.A. Balandin, Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. J. Power Sources 248(September), 37–43 (2014)CrossRef P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, A.A. Balandin, Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. J. Power Sources 248(September), 37–43 (2014)CrossRef
79.
go back to reference Z. Liu, D.D.L. Chung, Boron nitride particle filled paraffin wax as a phase-change thermal interface material. J. Electron. Packag. Trans. ASME 128(4), 319–323 (2006)CrossRef Z. Liu, D.D.L. Chung, Boron nitride particle filled paraffin wax as a phase-change thermal interface material. J. Electron. Packag. Trans. ASME 128(4), 319–323 (2006)CrossRef
80.
go back to reference M. Grujicic, C.L. Zhao, E.C. Dusel, The effect of thermal contact resistance on heat management in the electronic packaging. Appl. Surf. Sci. 246(1–3), 290–302 (2005)CrossRef M. Grujicic, C.L. Zhao, E.C. Dusel, The effect of thermal contact resistance on heat management in the electronic packaging. Appl. Surf. Sci. 246(1–3), 290–302 (2005)CrossRef
81.
go back to reference J.W. Zhao, R. Zhao, Y.K. Huo, W.L. Cheng, Effects of surface roughness, temperature and pressure on interface thermal resistance of thermal interface materials. Int. J. Heat Mass Transf. 140, 705–716 (2019)CrossRef J.W. Zhao, R. Zhao, Y.K. Huo, W.L. Cheng, Effects of surface roughness, temperature and pressure on interface thermal resistance of thermal interface materials. Int. J. Heat Mass Transf. 140, 705–716 (2019)CrossRef
83.
go back to reference K. Uetani, S. Ata, S. Tomonoh, T. Yamada, M. Yumura, K. Hata, Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking. Adv. Mater. 26(33), 5857–5862 (2014)CrossRef K. Uetani, S. Ata, S. Tomonoh, T. Yamada, M. Yumura, K. Hata, Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking. Adv. Mater. 26(33), 5857–5862 (2014)CrossRef
84.
go back to reference S. Bhanushali, P.C. Ghosh, G.P. Simon, W. Cheng, Copper nanowire-filled soft elastomer composites for applications as thermal interface materials. Adv. Mater. Interfaces 4(17), 1–12 (2017)CrossRef S. Bhanushali, P.C. Ghosh, G.P. Simon, W. Cheng, Copper nanowire-filled soft elastomer composites for applications as thermal interface materials. Adv. Mater. Interfaces 4(17), 1–12 (2017)CrossRef
85.
go back to reference W. Zhang, Q.Q. Kong, Z. Tao, J. Wei, L. Xie, X. Cui, C.M. Chen et al., 3D Thermally cross-linked graphene aerogel-enhanced silicone rubber elastomer as thermal interface material. Adv. Mater. Interfaces 6(12), 1–8 (2019) W. Zhang, Q.Q. Kong, Z. Tao, J. Wei, L. Xie, X. Cui, C.M. Chen et al., 3D Thermally cross-linked graphene aerogel-enhanced silicone rubber elastomer as thermal interface material. Adv. Mater. Interfaces 6(12), 1–8 (2019)
86.
go back to reference R.S. Prasher, J.C. Matayabas, Thermal contact resistance of cured gel polymeric thermal interface material. IEEE Trans. Comp. Pack. Technol. 27(4), 702–709 (2004)CrossRef R.S. Prasher, J.C. Matayabas, Thermal contact resistance of cured gel polymeric thermal interface material. IEEE Trans. Comp. Pack. Technol. 27(4), 702–709 (2004)CrossRef
87.
go back to reference J.C. Matayabas Jr., Chandler AZ (US); P.A. Koning Chandler AZ (US); A.A. Dani, Chandler AZ (US); Christoper, Chandler AZ (US), Assignee: Intel Corporation, Santa Clara CA, US “United States Patent,” Patent No: 6841867 B2, 2005 J.C. Matayabas Jr., Chandler AZ (US); P.A. Koning Chandler AZ (US); A.A. Dani, Chandler AZ (US); Christoper, Chandler AZ (US), Assignee: Intel Corporation, Santa Clara CA, US “United States Patent,” Patent No: 6841867 B2, 2005
88.
go back to reference K. Chano, G.M. Poliskie, J. Fregoso, Rheology of thermal interface materials composed of silicone gels. IEEE Trans. Compon. Packag. Manuf. Technol. 7(2), 217–220 (2017) K. Chano, G.M. Poliskie, J. Fregoso, Rheology of thermal interface materials composed of silicone gels. IEEE Trans. Compon. Packag. Manuf. Technol. 7(2), 217–220 (2017)
89.
go back to reference G. Yujun, L. Zhongliang, Z. Guangmeng, L. Yanxia, Effects of multi-walled carbon nanotubes addition on thermal properties of thermal grease. Int. J. Heat Mass Transf. 74, 358–367 (2014)CrossRef G. Yujun, L. Zhongliang, Z. Guangmeng, L. Yanxia, Effects of multi-walled carbon nanotubes addition on thermal properties of thermal grease. Int. J. Heat Mass Transf. 74, 358–367 (2014)CrossRef
90.
go back to reference P. Zhang, Q. Li, Y. Xuan, Thermal contact resistance of epoxy composites incorporated with nano-copper particles and the multi-walled carbon nanotubes. Compos. Part A Appl. Sci. Manuf. 57, 1–7 (2014)CrossRef P. Zhang, Q. Li, Y. Xuan, Thermal contact resistance of epoxy composites incorporated with nano-copper particles and the multi-walled carbon nanotubes. Compos. Part A Appl. Sci. Manuf. 57, 1–7 (2014)CrossRef
91.
go back to reference B.A. Cola, X. Xu, T.S. Fisher, Increased real contact in thermal interfaces: a carbon nanotube/foil material. Appl. Phys. Lett. 90(9), 88–91 (2007)CrossRef B.A. Cola, X. Xu, T.S. Fisher, Increased real contact in thermal interfaces: a carbon nanotube/foil material. Appl. Phys. Lett. 90(9), 88–91 (2007)CrossRef
92.
go back to reference K.M.F. Shahil, A.A. Balandin, Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12(2), 861–867 (2012)CrossRef K.M.F. Shahil, A.A. Balandin, Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12(2), 861–867 (2012)CrossRef
93.
go back to reference W. Lin, R. Zhang, K.S. Moon, C.P. Wong, Synthesis of high-quality vertically aligned carbon nanotubes on bulk copper substrate for thermal management. IEEE Trans. Adv. Packag. 33(2), 370–376 (2010)CrossRef W. Lin, R. Zhang, K.S. Moon, C.P. Wong, Synthesis of high-quality vertically aligned carbon nanotubes on bulk copper substrate for thermal management. IEEE Trans. Adv. Packag. 33(2), 370–376 (2010)CrossRef
94.
go back to reference B.A. Cola, J. Xu, T.S. Fisher, Contact mechanics and thermal conductance of carbon nanotube array interfaces. Int. J. Heat Mass Transf. 52(15–16), 3490–3503 (2009)CrossRef B.A. Cola, J. Xu, T.S. Fisher, Contact mechanics and thermal conductance of carbon nanotube array interfaces. Int. J. Heat Mass Transf. 52(15–16), 3490–3503 (2009)CrossRef
95.
go back to reference Y. Xu, Y. Zhang, E. Suhir, X. Wang, Thermal properties of carbon nanotube array used for integrated circuit cooling. J. Appl. Phys. 100(7), 074302 (2006)CrossRef Y. Xu, Y. Zhang, E. Suhir, X. Wang, Thermal properties of carbon nanotube array used for integrated circuit cooling. J. Appl. Phys. 100(7), 074302 (2006)CrossRef
96.
go back to reference T. Tong, Y. Zhao, L. Delzeit, A. Kashani, M. Meyyappan, A. Majumdar, Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials. IEEE Trans. Compon. Packag. Technol. 30(1), 92–100 (2007)CrossRef T. Tong, Y. Zhao, L. Delzeit, A. Kashani, M. Meyyappan, A. Majumdar, Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials. IEEE Trans. Compon. Packag. Technol. 30(1), 92–100 (2007)CrossRef
97.
go back to reference A.J. McNamara, Y. Joshi, Z.M. Zhang, Thermal resistance of thermal conductive adhesive anchored carbon nanotubes interface material. Int. J. Therm. Sci. 96, 221–226 (2015)CrossRef A.J. McNamara, Y. Joshi, Z.M. Zhang, Thermal resistance of thermal conductive adhesive anchored carbon nanotubes interface material. Int. J. Therm. Sci. 96, 221–226 (2015)CrossRef
98.
go back to reference M. Hao, Z. Huang, K.R. Saviers, G. Xiong, S.L. Hodson, T.S. Fisher, Characterization of vertically oriented carbon nanotube arrays as high-temperature thermal interface materials. Int. J. Heat Mass Transf. 106, 1287–1293 (2017)CrossRef M. Hao, Z. Huang, K.R. Saviers, G. Xiong, S.L. Hodson, T.S. Fisher, Characterization of vertically oriented carbon nanotube arrays as high-temperature thermal interface materials. Int. J. Heat Mass Transf. 106, 1287–1293 (2017)CrossRef
99.
go back to reference A.E. Haight, C.E. Green, B.A. Cola, Vertically aligned carbon nanotube based thermal interface materials for low contact pressure and low ambient pressure applications. Proceedings of 15th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2016, pp. 1261–1266, 2016 A.E. Haight, C.E. Green, B.A. Cola, Vertically aligned carbon nanotube based thermal interface materials for low contact pressure and low ambient pressure applications. Proceedings of 15th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2016, pp. 1261–1266, 2016
100.
go back to reference J. Xu, T.S. Fisher, Enhancement of thermal interface materials with carbon nanotube arrays. Int. J. Heat Mass Transf. 49(9–10), 1658–1666 (2006)CrossRef J. Xu, T.S. Fisher, Enhancement of thermal interface materials with carbon nanotube arrays. Int. J. Heat Mass Transf. 49(9–10), 1658–1666 (2006)CrossRef
101.
go back to reference D. Fabris, M. Rosshirt, C. Cardenas, P. Wilhite, T. Yamada, C.Y. Yang, Application of carbon nanotubes to thermal interface materials. J. Electron. Packag. Trans. ASME 133(2), (2011)CrossRef D. Fabris, M. Rosshirt, C. Cardenas, P. Wilhite, T. Yamada, C.Y. Yang, Application of carbon nanotubes to thermal interface materials. J. Electron. Packag. Trans. ASME 133(2), (2011)CrossRef
102.
go back to reference J.H. Taphouse, O.L. Smith, S.R. Marder, B.A. Cola, A pyrenylpropyl phosphonic acid surface modifier for mitigating the thermal resistance of carbon nanotube contacts. Adv. Funct. Mater. 24(4), 465–471 (2014)CrossRef J.H. Taphouse, O.L. Smith, S.R. Marder, B.A. Cola, A pyrenylpropyl phosphonic acid surface modifier for mitigating the thermal resistance of carbon nanotube contacts. Adv. Funct. Mater. 24(4), 465–471 (2014)CrossRef
103.
go back to reference Y. Pei, H. Zhong, M. Wang, P. Zhang, Y. Zhao, Effect of contact pressure on the performance of carbon nanotube arrays thermal interface material. Nanomaterials 8(9), 1–10 (2018)CrossRef Y. Pei, H. Zhong, M. Wang, P. Zhang, Y. Zhao, Effect of contact pressure on the performance of carbon nanotube arrays thermal interface material. Nanomaterials 8(9), 1–10 (2018)CrossRef
104.
go back to reference M.A. Peacock, C.K. Roy, M.C. Hamilton, R. Wayne Johnson, R.W. Knight, D.K. Harris, Characterization of transferred vertically aligned carbon nanotubes arrays as thermal interface materials. Int. J. Heat Mass Transf. 97, 94–100 (2016)CrossRef M.A. Peacock, C.K. Roy, M.C. Hamilton, R. Wayne Johnson, R.W. Knight, D.K. Harris, Characterization of transferred vertically aligned carbon nanotubes arrays as thermal interface materials. Int. J. Heat Mass Transf. 97, 94–100 (2016)CrossRef
105.
go back to reference L. Zhao, S. Chu, X. Chen, G. Chu, Efficient heat conducting liquid metal/CNT pads with thermal interface materials. Bull. Mater. Sci. 42(4), 1–5 (2019)CrossRef L. Zhao, S. Chu, X. Chen, G. Chu, Efficient heat conducting liquid metal/CNT pads with thermal interface materials. Bull. Mater. Sci. 42(4), 1–5 (2019)CrossRef
106.
go back to reference Y. Zhong, M. Zhou, F. Huang, T. Lin, D. Wan, Effect of graphene aerogel on thermal behavior of phase change materials for thermal management. Sol. Energy Mater. Sol. Cells 113, 195–200 (2013)CrossRef Y. Zhong, M. Zhou, F. Huang, T. Lin, D. Wan, Effect of graphene aerogel on thermal behavior of phase change materials for thermal management. Sol. Energy Mater. Sol. Cells 113, 195–200 (2013)CrossRef
107.
go back to reference B. Tang, G. Hu, H. Gao, L. Hai, Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials. Int. J. Heat Mass Transf. 85, 420–429 (2015)CrossRef B. Tang, G. Hu, H. Gao, L. Hai, Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials. Int. J. Heat Mass Transf. 85, 420–429 (2015)CrossRef
108.
go back to reference C. Liu, G. Hu, Highly efficient reduction of graphene oxide by sub/supercritical water and their application for thermal interface materials. Appl. Therm. Eng. 90, 193–198 (2015)CrossRef C. Liu, G. Hu, Highly efficient reduction of graphene oxide by sub/supercritical water and their application for thermal interface materials. Appl. Therm. Eng. 90, 193–198 (2015)CrossRef
109.
go back to reference A.S. Dmitriev, A.R. Valeev, Graphene nanocomposites as thermal interface materials for cooling energy devices. J. Phys. Conf. Ser. 891(1), 012359 (2017)CrossRef A.S. Dmitriev, A.R. Valeev, Graphene nanocomposites as thermal interface materials for cooling energy devices. J. Phys. Conf. Ser. 891(1), 012359 (2017)CrossRef
110.
go back to reference B.K. Mahadevan, S. Naghibi, F. Kargar, A.A. Balandin, Non-curing thermal interface materials with graphene fillers for thermal management of concentrated photovoltaic solar cells. C J. Carbon Res. 6(1), 2 (2019)CrossRef B.K. Mahadevan, S. Naghibi, F. Kargar, A.A. Balandin, Non-curing thermal interface materials with graphene fillers for thermal management of concentrated photovoltaic solar cells. C J. Carbon Res. 6(1), 2 (2019)CrossRef
111.
go back to reference Y.F. Zhang, Y.J. Ren, S.L. Bai, Vertically aligned graphene film/epoxy composites as heat dissipating materials. Int. J. Heat Mass Transf. 118, 510–517 (2018)CrossRef Y.F. Zhang, Y.J. Ren, S.L. Bai, Vertically aligned graphene film/epoxy composites as heat dissipating materials. Int. J. Heat Mass Transf. 118, 510–517 (2018)CrossRef
112.
go back to reference F. Kargar, Z. Barani, J.S. Lewis, B. Debnath, R.A. Salgado, E. Aytan, R. Lake, A.A. Balandin, Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers. ACS Appl. Mater. Interfaces 10(43), 37555–37565 (2018)CrossRef F. Kargar, Z. Barani, J.S. Lewis, B. Debnath, R.A. Salgado, E. Aytan, R. Lake, A.A. Balandin, Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers. ACS Appl. Mater. Interfaces 10(43), 37555–37565 (2018)CrossRef
113.
go back to reference J. Renteria, S. Legedza, R. Salgado, M.P. Baladin, S. Ramirez, M. Saadah, F. Kargar, A.A. Balandin, Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications. Mater. Des. 88, 214–221 (2015)CrossRef J. Renteria, S. Legedza, R. Salgado, M.P. Baladin, S. Ramirez, M. Saadah, F. Kargar, A.A. Balandin, Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications. Mater. Des. 88, 214–221 (2015)CrossRef
114.
go back to reference A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, R.C. Haddon, Graphite nanoplatelet–epoxy composite thermal interface materials. J. Phys. Chem. C 111(21), 7565–7569 (2007)CrossRef A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, R.C. Haddon, Graphite nanoplatelet–epoxy composite thermal interface materials. J. Phys. Chem. C 111(21), 7565–7569 (2007)CrossRef
115.
go back to reference S. Naghibi, F. Kargar, D. Wright, C.Y.T. Huang, A. Mohammadzadeh, Z. Barani, R. Salgado, A.A. Balandin, Noncuring graphene thermal interface materials for advanced electronics. Adv. Electron. Mater. 6(4), 1–9 (2020)CrossRef S. Naghibi, F. Kargar, D. Wright, C.Y.T. Huang, A. Mohammadzadeh, Z. Barani, R. Salgado, A.A. Balandin, Noncuring graphene thermal interface materials for advanced electronics. Adv. Electron. Mater. 6(4), 1–9 (2020)CrossRef
116.
go back to reference W. Yu, H. Xie, L. Chen, Z. Zhu, J. Zhao, Z. Zhang, Graphene based silicone thermal greases. Phys. Lett. Sect. A Gen. At. Solid State Phys. 378(3), 207–211 (2014) W. Yu, H. Xie, L. Chen, Z. Zhu, J. Zhao, Z. Zhang, Graphene based silicone thermal greases. Phys. Lett. Sect. A Gen. At. Solid State Phys. 378(3), 207–211 (2014)
117.
go back to reference T. Cui, Q. Li, Y. Xuan, P. Zhang, Preparation and thermal properties of the graphene–polyolefin adhesive composites: application in thermal interface materials. Microelectron. Reliab. 55(12), 2569–2574 (2015)CrossRef T. Cui, Q. Li, Y. Xuan, P. Zhang, Preparation and thermal properties of the graphene–polyolefin adhesive composites: application in thermal interface materials. Microelectron. Reliab. 55(12), 2569–2574 (2015)CrossRef
118.
go back to reference A. Li, C. Zhang, Y.F. Zhang, RGO/TPU composite with a segregated structure as thermal interface material. Compos. Part A Appl. Sci. Manuf. 101, 108–114 (2017)CrossRef A. Li, C. Zhang, Y.F. Zhang, RGO/TPU composite with a segregated structure as thermal interface material. Compos. Part A Appl. Sci. Manuf. 101, 108–114 (2017)CrossRef
119.
go back to reference W. Park, Y. Guo, X. Li, J. Hu, L. Liu, X. Ruan, Y.P. Chen et al., High-performance thermal interface material based on few-layer graphene composite. J. Phys. Chem. C 119(47), 26753–26759 (2015)CrossRef W. Park, Y. Guo, X. Li, J. Hu, L. Liu, X. Ruan, Y.P. Chen et al., High-performance thermal interface material based on few-layer graphene composite. J. Phys. Chem. C 119(47), 26753–26759 (2015)CrossRef
120.
go back to reference C. Zandén, X. Luo, L. Ye, J. Liu, A new solder matrix nano polymer composite for thermal management applications. Compos. Sci. Technol. 94, 54–61 (2014)CrossRef C. Zandén, X. Luo, L. Ye, J. Liu, A new solder matrix nano polymer composite for thermal management applications. Compos. Sci. Technol. 94, 54–61 (2014)CrossRef
121.
go back to reference M. Loeblein, S.H. Tsang, M. Pawlik, E.J.R. Phua, H. Yong, X.W. Zhang, C.L. Gan, E.H.T. Teo, High-density 3D-boron nitride and 3D-graphene for high-performance nano-thermal interface material. ACS Nano 11(2), 2033–2044 (2017)CrossRef M. Loeblein, S.H. Tsang, M. Pawlik, E.J.R. Phua, H. Yong, X.W. Zhang, C.L. Gan, E.H.T. Teo, High-density 3D-boron nitride and 3D-graphene for high-performance nano-thermal interface material. ACS Nano 11(2), 2033–2044 (2017)CrossRef
122.
go back to reference X. Luo, Y. Zhang, C. Zanden, M. Murugesan, Y. Cao, L. Ye, J. Liu, Novel thermal interface materials: boron nitride nanofiber and indium composites for electronics heat dissipation applications. J. Mater. Sci. Mater. Electron. 25(5), 2333–2338 (2014)CrossRef X. Luo, Y. Zhang, C. Zanden, M. Murugesan, Y. Cao, L. Ye, J. Liu, Novel thermal interface materials: boron nitride nanofiber and indium composites for electronics heat dissipation applications. J. Mater. Sci. Mater. Electron. 25(5), 2333–2338 (2014)CrossRef
123.
go back to reference N. Goel, T.K. Anoop, A. Bhattacharya, J.A. Cervantes, R.J. Mongia, S.V. Machiroutu, H.L. Lin, Y.C. Huang, K.C. Fan, B.L. Denq, C.H. Liu, C.H. Lin, C.W. Tien, J.H. Pan, Technical review of characterization methods for Thermal Interface Materials (TIM). 2008 11th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems I-THERM, pp. 248–258, 2008 N. Goel, T.K. Anoop, A. Bhattacharya, J.A. Cervantes, R.J. Mongia, S.V. Machiroutu, H.L. Lin, Y.C. Huang, K.C. Fan, B.L. Denq, C.H. Liu, C.H. Lin, C.W. Tien, J.H. Pan, Technical review of characterization methods for Thermal Interface Materials (TIM). 2008 11th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems I-THERM, pp. 248–258, 2008
124.
go back to reference M.C.K. Swamy, Satyanarayan, A review of the performance and characterization of conventional and promising thermal interface materials for electronic package applications. J. Electron. Mater. 48(12), 7623–7634 (2019)CrossRef M.C.K. Swamy, Satyanarayan, A review of the performance and characterization of conventional and promising thermal interface materials for electronic package applications. J. Electron. Mater. 48(12), 7623–7634 (2019)CrossRef
125.
go back to reference M.A. Raza, A. Westwood, C. Stirling, Graphite nanoplatelet/rubbery epoxy composites as adhesives and pads for thermal interface applications. J. Mater. Sci. Mater. Electron. 29(10), 8822–8837 (2018)CrossRef M.A. Raza, A. Westwood, C. Stirling, Graphite nanoplatelet/rubbery epoxy composites as adhesives and pads for thermal interface applications. J. Mater. Sci. Mater. Electron. 29(10), 8822–8837 (2018)CrossRef
126.
go back to reference M. Zahid, M.T. Masood, A. Athanassiou, I.S. Bayer, Sustainable thermal interface materials from recycled cotton textiles and graphene nanoplatelets. Appl. Phys. Lett. 113(4), 044103 (2018)CrossRef M. Zahid, M.T. Masood, A. Athanassiou, I.S. Bayer, Sustainable thermal interface materials from recycled cotton textiles and graphene nanoplatelets. Appl. Phys. Lett. 113(4), 044103 (2018)CrossRef
127.
go back to reference C.K. Roy, Application of Low Melt Alloys as Compliant Thermal Interface Materials: A Study of Performance and Degradation under Thermal Duress. Dissertation, Submitted to Auburn University, 2016 C.K. Roy, Application of Low Melt Alloys as Compliant Thermal Interface Materials: A Study of Performance and Degradation under Thermal Duress. Dissertation, Submitted to Auburn University, 2016
128.
go back to reference J.P. Gwinn, M. Saini, R.L. Webb, Apparatus for accurate measurement of interface resistance of high performance thermal interface materials. Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems ITHERM, pp. 644–650, 2002 J.P. Gwinn, M. Saini, R.L. Webb, Apparatus for accurate measurement of interface resistance of high performance thermal interface materials. Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems ITHERM, pp. 644–650, 2002
129.
go back to reference K.N. Prabhu, A.A. Ashish, Inverse modeling of heat transfer with application to solidification and quenching. Mater. Manuf. Process. 17(4), 469–481 (2002)CrossRef K.N. Prabhu, A.A. Ashish, Inverse modeling of heat transfer with application to solidification and quenching. Mater. Manuf. Process. 17(4), 469–481 (2002)CrossRef
130.
go back to reference J.V. Beck, Nonlinear estimation applied to the nonlinear inverse heat conduction problem. Int. J. Heat Mass Transf. 13(4), 703–716 (1970)CrossRef J.V. Beck, Nonlinear estimation applied to the nonlinear inverse heat conduction problem. Int. J. Heat Mass Transf. 13(4), 703–716 (1970)CrossRef
131.
go back to reference G. Stolz, Numerical solutions to an inverse problem of heat conduction for simple shapes. J. Heat Transf. 82(1), 20–25 (1960)CrossRef G. Stolz, Numerical solutions to an inverse problem of heat conduction for simple shapes. J. Heat Transf. 82(1), 20–25 (1960)CrossRef
132.
go back to reference O.R. Burggraf, An exact solution of the inverse problem in heat conduction theory and applications. J. Heat Transf. 86(3), 373–380 (1964)CrossRef O.R. Burggraf, An exact solution of the inverse problem in heat conduction theory and applications. J. Heat Transf. 86(3), 373–380 (1964)CrossRef
Metadata
Title
Thermal interface materials for cooling microelectronic systems: present status and future challenges
Authors
Ramakrishna Devananda Pathumudy
K. Narayan Prabhu
Publication date
15-04-2021
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 9/2021
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-05635-w

Other articles of this Issue 9/2021

Journal of Materials Science: Materials in Electronics 9/2021 Go to the issue