Skip to main content
Top
Published in: Journal of Computational Electronics 2/2024

02-02-2024

Numerical investigation of energy level strategy for TMO/Si tunneling heterojunction solar cells

Authors: Zhongliang Gao, GuiJia Feng, Hui Zhou, Li Ding

Published in: Journal of Computational Electronics | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A thin film of transition metal oxide (TMO) layer forms a heterojunction configuration with silicon (Si) via dopant-free fabrication process. However, excellent hole selective contact performance of TMO/n-Si heterojunction necessitates a stringent alignment of energy levels. Herein, we studied the level matching strategy of TMO/n-Si heterojunction with four parameters including conduction band (EC), bandgap (Eg), Fermi level (EF) and interface trap concentration (Nt). It is found that the electron affinity (Ea) of TMO determines the relative position of the energy level, and increasing the Ea can increase the open-circuit voltage (VOC) from 426.0 to 742.5 mV. In addition, the energy level bending of the interface can be adjusted by the relative EF position of TMO and n-Si to improve the carrier separation efficiency to increase the short-circuit current density (JSC). Meanwhile, the higher Nt is beneficial to the carrier tunneling transport in the case of EC of TMO being smaller than that of n-Si, which enhances the energy level bending of the interface and improves the solar cells performance. Finally, the MoOx/n-Si heterojunction solar cell is optimized to obtained the power conversion efficiency (PCE) of 21.87%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Green, M.A., Hishikawa, Y., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., Ho-Baillie, A.W.Y.: Solar cell efficiency tables (Version 53). Prog. Photovolt. 27, 3–12 (2019)CrossRef Green, M.A., Hishikawa, Y., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., Ho-Baillie, A.W.Y.: Solar cell efficiency tables (Version 53). Prog. Photovolt. 27, 3–12 (2019)CrossRef
2.
go back to reference Jiang, Q., Chu, Z., Wang, P., Yang, X., Liu, H., Wang, Y., Yin, Z., Wu, J., Zhang, X., You, J.: Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 29, 1703852 (2017)CrossRef Jiang, Q., Chu, Z., Wang, P., Yang, X., Liu, H., Wang, Y., Yin, Z., Wu, J., Zhang, X., You, J.: Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 29, 1703852 (2017)CrossRef
3.
go back to reference Benick, J., Richter, A., Müller, R., Hauser, H., Feldmann, F., Krenckel, P., Riepe, S., Schindler, F., Schubert, M.C., Hermle, M., Bett, A.W., Glunz, S.W.: High-efficiency n-type HP mc silicon solar cells. IEEE J. Photovolt. 7, 1171–1175 (2017)CrossRef Benick, J., Richter, A., Müller, R., Hauser, H., Feldmann, F., Krenckel, P., Riepe, S., Schindler, F., Schubert, M.C., Hermle, M., Bett, A.W., Glunz, S.W.: High-efficiency n-type HP mc silicon solar cells. IEEE J. Photovolt. 7, 1171–1175 (2017)CrossRef
4.
go back to reference Long, W., Yin, S., Peng, F., Yang, M., Fang, L., Ru, X., Qu, M., Lin, H., Xu, X.: On the limiting efficiency for silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 231, 111291 (2021)CrossRef Long, W., Yin, S., Peng, F., Yang, M., Fang, L., Ru, X., Qu, M., Lin, H., Xu, X.: On the limiting efficiency for silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 231, 111291 (2021)CrossRef
5.
go back to reference Schmidt, J., Peibst, R., Brendel, R.: Surface passivation of crystalline silicon solar cells: present and future. Sol. Energy Mater. Sol. Cells 187, 39–54 (2018)CrossRef Schmidt, J., Peibst, R., Brendel, R.: Surface passivation of crystalline silicon solar cells: present and future. Sol. Energy Mater. Sol. Cells 187, 39–54 (2018)CrossRef
6.
go back to reference Wang, X., Kurdgelashvili, L., Byrne, J., Barnett, A.: The value of module efficiency in lowering the levelized cost of energy of photovoltaic systems. Renew. Sustain. Energy Rev. 15, 4248–4254 (2011)CrossRef Wang, X., Kurdgelashvili, L., Byrne, J., Barnett, A.: The value of module efficiency in lowering the levelized cost of energy of photovoltaic systems. Renew. Sustain. Energy Rev. 15, 4248–4254 (2011)CrossRef
7.
go back to reference Singh, R., Sivakumar, R., Srivastava, S.K., Som, T.: Carrier selective MoOx/Si heterojunctions: role of thickness. Appl. Surf. Sci. 564, 150316 (2021)CrossRef Singh, R., Sivakumar, R., Srivastava, S.K., Som, T.: Carrier selective MoOx/Si heterojunctions: role of thickness. Appl. Surf. Sci. 564, 150316 (2021)CrossRef
8.
go back to reference García-Hernansanz, R., García-Hemme, E., Montero, D., Olea, J., Del Prado, A., Martil, I., Voz, C., Gerling, L.G., Puigdollers, J., Alcubilla, R.: Transport mechanisms in silicon heterojunction solar cells with molybdenum oxide as a hole transport layer. Sol. Energy Mater. Sol. Cells 185, 61–65 (2018)CrossRef García-Hernansanz, R., García-Hemme, E., Montero, D., Olea, J., Del Prado, A., Martil, I., Voz, C., Gerling, L.G., Puigdollers, J., Alcubilla, R.: Transport mechanisms in silicon heterojunction solar cells with molybdenum oxide as a hole transport layer. Sol. Energy Mater. Sol. Cells 185, 61–65 (2018)CrossRef
9.
go back to reference Fang, L., Baik, S.J., Kim, J.W., Kang, S.J., Seo, J.W., Jeon, J.W., Kim, Y.H., Lim, K.S.: Tunable work function of a WOx buffer layer for enhanced photocarrier collection of pin-type amorphous silicon solar cells. J. Appl. Phys. 109, 104501 (2011)CrossRef Fang, L., Baik, S.J., Kim, J.W., Kang, S.J., Seo, J.W., Jeon, J.W., Kim, Y.H., Lim, K.S.: Tunable work function of a WOx buffer layer for enhanced photocarrier collection of pin-type amorphous silicon solar cells. J. Appl. Phys. 109, 104501 (2011)CrossRef
10.
go back to reference Liang, Z., Su, M., Zhou, Y., Gong, L., Zhao, C., Chen, K., Xie, F., Zhang, W., Chen, J., Liu, P., Xie, W.: Interaction at the silicon/transition metal oxide heterojunction interface and its effect on the photovoltaic performance. Phys. Chem. Chem. Phys. 17, 27409–27413 (2015)CrossRef Liang, Z., Su, M., Zhou, Y., Gong, L., Zhao, C., Chen, K., Xie, F., Zhang, W., Chen, J., Liu, P., Xie, W.: Interaction at the silicon/transition metal oxide heterojunction interface and its effect on the photovoltaic performance. Phys. Chem. Chem. Phys. 17, 27409–27413 (2015)CrossRef
11.
go back to reference Wu, W., Bao, J., Jia, X., Liu, Z., Cai, L., Liu, B., Song, J., Shen, H.: Dopant-free back contact silicon heterojunction solar cells employing transition metal oxide emitters. Phys. Status Solidi RRL 10, 662–667 (2016)CrossRef Wu, W., Bao, J., Jia, X., Liu, Z., Cai, L., Liu, B., Song, J., Shen, H.: Dopant-free back contact silicon heterojunction solar cells employing transition metal oxide emitters. Phys. Status Solidi RRL 10, 662–667 (2016)CrossRef
12.
go back to reference Köhler, M., Pomaska, M., Procel, P., Santbergen, R., Zamchiy, A., Macco, B., Lambertz, A., Duan, W., Cao, P., Klingebiel, B., Li, S., Eberst, A., Luysberg, M., Qiu, K., Isabella, O., Finger, F., Kirchartz, T., Rau, U., Ding, K.: A silicon carbide-based highly transparent passivating contact for crystalline silicon solar cells approaching efficiencies of 24%. Nat. Energy 6, 529–537 (2021)CrossRef Köhler, M., Pomaska, M., Procel, P., Santbergen, R., Zamchiy, A., Macco, B., Lambertz, A., Duan, W., Cao, P., Klingebiel, B., Li, S., Eberst, A., Luysberg, M., Qiu, K., Isabella, O., Finger, F., Kirchartz, T., Rau, U., Ding, K.: A silicon carbide-based highly transparent passivating contact for crystalline silicon solar cells approaching efficiencies of 24%. Nat. Energy 6, 529–537 (2021)CrossRef
13.
go back to reference Almora, O., Gerling, L.G., Voz, C., Alcubilla, R., Puigdollers, J., Garcia-Belmonte, G.: Superior performance of V2O5 as hole selective contact over other transition metal oxides in silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 168, 221–226 (2017)CrossRef Almora, O., Gerling, L.G., Voz, C., Alcubilla, R., Puigdollers, J., Garcia-Belmonte, G.: Superior performance of V2O5 as hole selective contact over other transition metal oxides in silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 168, 221–226 (2017)CrossRef
14.
go back to reference Mehmood, H., Nasser, H., Tauqeer, T., Turan, R.: Simulation of silicon heterostructure solar cell featuring dopant-free carrier-selective molybdenum oxide and titanium oxide contacts. Renew. Energy 143, 359–367 (2019)CrossRef Mehmood, H., Nasser, H., Tauqeer, T., Turan, R.: Simulation of silicon heterostructure solar cell featuring dopant-free carrier-selective molybdenum oxide and titanium oxide contacts. Renew. Energy 143, 359–367 (2019)CrossRef
15.
go back to reference Fang, L., Baik, S.J., Lim, K.S.: Transition metal oxide window layer in thin film amorphous silicon solar cells. Thin Solid Films 556, 515–5194 (2014)CrossRef Fang, L., Baik, S.J., Lim, K.S.: Transition metal oxide window layer in thin film amorphous silicon solar cells. Thin Solid Films 556, 515–5194 (2014)CrossRef
16.
go back to reference Ore, E., Amaratunga, G.: Crystalline silicon heterojunction solar cells with metal oxide window layers. In: 2019 IEEE 46th photovoltaic specialists conference (PVSC), pp. 1139–1142 (2019) Ore, E., Amaratunga, G.: Crystalline silicon heterojunction solar cells with metal oxide window layers. In: 2019 IEEE 46th photovoltaic specialists conference (PVSC), pp. 1139–1142 (2019)
17.
go back to reference Kafle, B., Goraya, B.S., Mack, S., Feldmann, F., Nold, S., Rentsch, J.: TOPCon-technology options for cost efficient industrial manufacturing. Sol. Energy Mater. Sol. Cells 227, 111100 (2021)CrossRef Kafle, B., Goraya, B.S., Mack, S., Feldmann, F., Nold, S., Rentsch, J.: TOPCon-technology options for cost efficient industrial manufacturing. Sol. Energy Mater. Sol. Cells 227, 111100 (2021)CrossRef
18.
go back to reference Nasser, H., Es, F., Zolfaghari Borra, M., Semiz, E., Kökbudak, G., Orhan, E., Turan, R.: On the application of hole-selective MoOx as full-area rear contact for industrial scale p-type c-Si solar cells. Prog. Photovolt. 29, 281–293 (2020)CrossRef Nasser, H., Es, F., Zolfaghari Borra, M., Semiz, E., Kökbudak, G., Orhan, E., Turan, R.: On the application of hole-selective MoOx as full-area rear contact for industrial scale p-type c-Si solar cells. Prog. Photovolt. 29, 281–293 (2020)CrossRef
19.
go back to reference Bhatia, S., Khorakiwala, I.M., Nair, P.R., Antony, A.: Influence of post deposition fabrication steps and quantitative estimation of band diagram of Si/MoOX heterojunction for carrier selective solar cells. Sol. Energy 194, 141–147 (2019)CrossRef Bhatia, S., Khorakiwala, I.M., Nair, P.R., Antony, A.: Influence of post deposition fabrication steps and quantitative estimation of band diagram of Si/MoOX heterojunction for carrier selective solar cells. Sol. Energy 194, 141–147 (2019)CrossRef
20.
go back to reference Yang, X., Xu, H., Liu, W., Bi, Q., Xu, L., Kang, J., Hedhili, M.N., Sun, B., Zhang, X., De Wolf, S.: Atomic layer deposition of vanadium oxide as hole-selective contact for crystalline silicon solar cells. Adv. Electron. Mater. 6, 2000467 (2020)CrossRef Yang, X., Xu, H., Liu, W., Bi, Q., Xu, L., Kang, J., Hedhili, M.N., Sun, B., Zhang, X., De Wolf, S.: Atomic layer deposition of vanadium oxide as hole-selective contact for crystalline silicon solar cells. Adv. Electron. Mater. 6, 2000467 (2020)CrossRef
21.
go back to reference Kim, S.H., Jung, J.Y., Wehrspohn, R.B., Lee, J.H.: All-room-temperature processed 17.25%-crystalline silicon solar cell. ACS Appl. Energy Mater. 3, 3180–3185 (2020)CrossRef Kim, S.H., Jung, J.Y., Wehrspohn, R.B., Lee, J.H.: All-room-temperature processed 17.25%-crystalline silicon solar cell. ACS Appl. Energy Mater. 3, 3180–3185 (2020)CrossRef
22.
go back to reference Liu, Y., Zhang, J., Wu, H., Cui, W., Wang, R., Ding, K., Lee, S.T., Sun, B.: Low-temperature synthesis TiOx passivation layer for organic-silicon heterojunction solar cell with a high open-circuit voltage. Nano Energy 34, 257–263 (2017)CrossRef Liu, Y., Zhang, J., Wu, H., Cui, W., Wang, R., Ding, K., Lee, S.T., Sun, B.: Low-temperature synthesis TiOx passivation layer for organic-silicon heterojunction solar cell with a high open-circuit voltage. Nano Energy 34, 257–263 (2017)CrossRef
23.
go back to reference Matsui, T., Bivour, M., Ndione, P.F., Bonilla, R.S., Hermle, M.: Origin of the tunable carrier selectivity of atomic-layer-deposited TiOx nanolayers in crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 209, 110461 (2020)CrossRef Matsui, T., Bivour, M., Ndione, P.F., Bonilla, R.S., Hermle, M.: Origin of the tunable carrier selectivity of atomic-layer-deposited TiOx nanolayers in crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 209, 110461 (2020)CrossRef
24.
go back to reference Chen, L., Gao, Z., Zheng, Y., Cui, M., Yan, H., Wei, D., Dou, S., Ji, J., Jia, E., Sang, N., Liu, K., Ding, X., Li, Y., Li, M.: 14.1% efficiency hybrid planar-Si/organic heterojunction solar cells with SnO2 insertion layer. Sol. Energy 174, 549–555 (2018)CrossRef Chen, L., Gao, Z., Zheng, Y., Cui, M., Yan, H., Wei, D., Dou, S., Ji, J., Jia, E., Sang, N., Liu, K., Ding, X., Li, Y., Li, M.: 14.1% efficiency hybrid planar-Si/organic heterojunction solar cells with SnO2 insertion layer. Sol. Energy 174, 549–555 (2018)CrossRef
25.
go back to reference Xue, M., Nazif, K.N., Lyu, Z., Jiang, J., Lu, C.Y., Lee, N., Zang, K., Chen, Y., Zheng, T., Kamins, T.I., Brongersma, M.L., Saraswat, K.C., Harris, J.S.: Free-standing 2.7 μm thick ultrathin crystalline silicon solar cell with efficiency above 12.0%. Nano Energy 70, 104466 (2020)CrossRef Xue, M., Nazif, K.N., Lyu, Z., Jiang, J., Lu, C.Y., Lee, N., Zang, K., Chen, Y., Zheng, T., Kamins, T.I., Brongersma, M.L., Saraswat, K.C., Harris, J.S.: Free-standing 2.7 μm thick ultrathin crystalline silicon solar cell with efficiency above 12.0%. Nano Energy 70, 104466 (2020)CrossRef
26.
go back to reference Mallem, K., Kim, Y.J., Hussain, S.Q., Dutta, S., Le, A.H., Ju, M., Park, J., Cho, Y.H., Kim, Y., Cho, E.C., Yi, J.: Molybdenum oxide: a superior hole extraction layer for replacing p-type hydrogenated amorphous silicon with high efficiency heterojunction Si solar cells. Mater. Res. Bull. 110, 90–96 (2019)CrossRef Mallem, K., Kim, Y.J., Hussain, S.Q., Dutta, S., Le, A.H., Ju, M., Park, J., Cho, Y.H., Kim, Y., Cho, E.C., Yi, J.: Molybdenum oxide: a superior hole extraction layer for replacing p-type hydrogenated amorphous silicon with high efficiency heterojunction Si solar cells. Mater. Res. Bull. 110, 90–96 (2019)CrossRef
27.
go back to reference Lu, C., Prakoso, A.B., Wang, H.: Hole selective WOx and V2Ox contacts using solution process for silicon solar cells application. Mater. Chem. Phys. 273, 125101 (2021)CrossRef Lu, C., Prakoso, A.B., Wang, H.: Hole selective WOx and V2Ox contacts using solution process for silicon solar cells application. Mater. Chem. Phys. 273, 125101 (2021)CrossRef
28.
go back to reference Mehmood, H., Nasser, H., Zaidi, S.M., Tauqeer, T., Turan, R.: Physical device simulation of dopant-free asymmetric silicon heterojunction solar cell featuring tungsten oxide as a hole-selective layer with ultrathin silicon oxide passivation layer. Renew. Energy 183, 188–201 (2022)CrossRef Mehmood, H., Nasser, H., Zaidi, S.M., Tauqeer, T., Turan, R.: Physical device simulation of dopant-free asymmetric silicon heterojunction solar cell featuring tungsten oxide as a hole-selective layer with ultrathin silicon oxide passivation layer. Renew. Energy 183, 188–201 (2022)CrossRef
29.
go back to reference Gao, Z., Gao, T., Geng, Q., Lin, G., Li, Y., Chen, L., Li, M.: Improving light absorption of active layer by adjusting PEDOT:PSS film for high efficiency Si-based hybrid solar cells. Sol. Energy 228, 299–307 (2021)CrossRef Gao, Z., Gao, T., Geng, Q., Lin, G., Li, Y., Chen, L., Li, M.: Improving light absorption of active layer by adjusting PEDOT:PSS film for high efficiency Si-based hybrid solar cells. Sol. Energy 228, 299–307 (2021)CrossRef
30.
go back to reference Gao, T., Geng, Q., Gao, Z., Li, Y., Chen, L., Li, M.: Improving junction quality via modifying the Si surface to enhance the performance of PEDOT:PSS/Si hybrid solar cells. ACS Appl. Energy Mater. 4, 12543–12551 (2021)CrossRef Gao, T., Geng, Q., Gao, Z., Li, Y., Chen, L., Li, M.: Improving junction quality via modifying the Si surface to enhance the performance of PEDOT:PSS/Si hybrid solar cells. ACS Appl. Energy Mater. 4, 12543–12551 (2021)CrossRef
31.
go back to reference Shang, A., Li, X.: Photovoltaic devices: opto-electro-thermal physics and modeling. Adv. Mater. 29, 1603492 (2016)CrossRef Shang, A., Li, X.: Photovoltaic devices: opto-electro-thermal physics and modeling. Adv. Mater. 29, 1603492 (2016)CrossRef
32.
go back to reference Li, X., Hylton, N.P., Giannini, V., Lee, K.H., Ekins-Daukes, N.J., Maier, S.A.: Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations. Prog. Photovolt. 21, 109–120 (2012)CrossRef Li, X., Hylton, N.P., Giannini, V., Lee, K.H., Ekins-Daukes, N.J., Maier, S.A.: Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations. Prog. Photovolt. 21, 109–120 (2012)CrossRef
33.
go back to reference Gao, Z., Lin, G., Chen, Y., Zheng, Y., Sang, N., Li, Y., Chen, L., Li, M.: Moth-eye nanostructure PDMS films for reducing reflection and retaining flexibility in ultra-thin c-Si solar cells. Sol. Energy 205, 275–281 (2020)CrossRef Gao, Z., Lin, G., Chen, Y., Zheng, Y., Sang, N., Li, Y., Chen, L., Li, M.: Moth-eye nanostructure PDMS films for reducing reflection and retaining flexibility in ultra-thin c-Si solar cells. Sol. Energy 205, 275–281 (2020)CrossRef
35.
go back to reference Mehmood, H., Nasser, H., Tauqeer, T., Turan, R.: Numerical analysis of dopant-free asymmetric silicon heterostructure solar cell with SiO2 as passivation layer. Int. J. Energy Res. 44, 10739–10753 (2020)CrossRef Mehmood, H., Nasser, H., Tauqeer, T., Turan, R.: Numerical analysis of dopant-free asymmetric silicon heterostructure solar cell with SiO2 as passivation layer. Int. J. Energy Res. 44, 10739–10753 (2020)CrossRef
36.
go back to reference Mehmood, H., Nasser, H., Tauqeer, T., Hussain, S., Ozkol, E., Turan, R.: Simulation of an efficient silicon heterostructure solar cell concept featuring molybdenum oxide carrier-selective contact. Int. J. Energy Res. 42, 1563–1579 (2018)CrossRef Mehmood, H., Nasser, H., Tauqeer, T., Hussain, S., Ozkol, E., Turan, R.: Simulation of an efficient silicon heterostructure solar cell concept featuring molybdenum oxide carrier-selective contact. Int. J. Energy Res. 42, 1563–1579 (2018)CrossRef
Metadata
Title
Numerical investigation of energy level strategy for TMO/Si tunneling heterojunction solar cells
Authors
Zhongliang Gao
GuiJia Feng
Hui Zhou
Li Ding
Publication date
02-02-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02128-x

Other articles of this Issue 2/2024

Journal of Computational Electronics 2/2024 Go to the issue