Skip to main content
Top

2011 | OriginalPaper | Chapter

9. Other Techniques in Nanoindentation

Author : Anthony C. Fischer-Cripps

Published in: Nanoindentation

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanoindentation has proven to be a very versatile method of mechanical testing. It is often considered to be non-destructive in the sense that the indentations are in general, too small to be visible to the naked eye and, for the most part, the test does not impair the structural integrity of the specimen. Compared to the previous chapters, we now turn to a discussion of various unusual and advanced methods of testing that illustrate the versatility of the method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Shiwa, E.R. Weppelmann, D. Munz, M.V. Swain, and T. Kishi, “Acoustic emission and precision force-displacement observations on pointed and spherical indentation of silicon and TiN film on silicon,” J. Mat. Sci. 31, 1996, pp. 5985–5991.CrossRef M. Shiwa, E.R. Weppelmann, D. Munz, M.V. Swain, and T. Kishi, “Acoustic emission and precision force-displacement observations on pointed and spherical indentation of silicon and TiN film on silicon,” J. Mat. Sci. 31, 1996, pp. 5985–5991.CrossRef
2.
go back to reference N.I. Tymiak, A. Daugela, T.J. Wyrobek, and O.L. Warren, “Highly localized acoustic emission monitoring of nanoscale indentation contacts,” J. Mater. Res. 18 4, 2003, pp. 784–796.CrossRef N.I. Tymiak, A. Daugela, T.J. Wyrobek, and O.L. Warren, “Highly localized acoustic emission monitoring of nanoscale indentation contacts,” J. Mater. Res. 18 4, 2003, pp. 784–796.CrossRef
3.
go back to reference D. Tabor, Hardness of Metals, Clarendon Press, Oxford,1951. D. Tabor, Hardness of Metals, Clarendon Press, Oxford,1951.
4.
go back to reference R. Hill, B. Storåkers, and A.B. Zdunek, “A theoretical study of the Brinell hardness test,” Proc. R. Soc. A423, 1989, pp. 301–330.CrossRef R. Hill, B. Storåkers, and A.B. Zdunek, “A theoretical study of the Brinell hardness test,” Proc. R. Soc. A423, 1989, pp. 301–330.CrossRef
5.
go back to reference M.M. Chaudhri, “Subsurface deformation patterns around indentation in work-hardened mild steel,” Phil. Mag. Lett. 67 2, 1993, pp. 107–115.CrossRef M.M. Chaudhri, “Subsurface deformation patterns around indentation in work-hardened mild steel,” Phil. Mag. Lett. 67 2, 1993, pp. 107–115.CrossRef
6.
go back to reference A.F. Bower, N.A. Fleck, A. Needleman, and N. Ogbonna, “Indentation of a power-law creeping solid,” Proc. R. Soc. A441, 1993, pp. 97–124.CrossRef A.F. Bower, N.A. Fleck, A. Needleman, and N. Ogbonna, “Indentation of a power-law creeping solid,” Proc. R. Soc. A441, 1993, pp. 97–124.CrossRef
7.
go back to reference B. Storåkers and P. -L. Larsson, “On Brinell and Boussinesq indentation of creeping solids,” J. Mech. Phys. Solids, 42 2, 1994, pp. 307–332.CrossRefMATH B. Storåkers and P. -L. Larsson, “On Brinell and Boussinesq indentation of creeping solids,” J. Mech. Phys. Solids, 42 2, 1994, pp. 307–332.CrossRefMATH
8.
go back to reference M.J. Mayo and W.D. Nix, “A microindentation study of superplasticity in Pb, Sn, and Sn-38wt%Pb,” Acta Metall. 36 8, 1988, pp. 2183–2192.CrossRef M.J. Mayo and W.D. Nix, “A microindentation study of superplasticity in Pb, Sn, and Sn-38wt%Pb,” Acta Metall. 36 8, 1988, pp. 2183–2192.CrossRef
9.
go back to reference N.R. Moody, A. Strojny, D. Medlin, S. Guthrie, and W.W. Gerberich, “Test rate effects on the mechanical behaviour of thin aluminium films,” Mat. Res. Soc. Symp. Proc. 522, 1998, pp. 281–286.CrossRef N.R. Moody, A. Strojny, D. Medlin, S. Guthrie, and W.W. Gerberich, “Test rate effects on the mechanical behaviour of thin aluminium films,” Mat. Res. Soc. Symp. Proc. 522, 1998, pp. 281–286.CrossRef
10.
go back to reference Y.-T. Cheng and C.-M. Cheng, “What is indentation hardness?,” Surf. Coat. Tech. 133-134, 2000, pp. 417–424.CrossRef Y.-T. Cheng and C.-M. Cheng, “What is indentation hardness?,” Surf. Coat. Tech. 133-134, 2000, pp. 417–424.CrossRef
11.
go back to reference C.A. Schuh, T.G. Nieh and Y. Kawamura, “Rate dependence of serrated flow during nanoindentation of a bulk metallic glass,” J. Mater. Res. 17 7, 2002, pp. 1651–1654.CrossRef C.A. Schuh, T.G. Nieh and Y. Kawamura, “Rate dependence of serrated flow during nanoindentation of a bulk metallic glass,” J. Mater. Res. 17 7, 2002, pp. 1651–1654.CrossRef
12.
go back to reference N.Q. Chinh, Gy. Horváth, Zs. Kovács, J. Lendvai, Characterization of plastic instability steps occurring in depth-sensing indentation tests,” Mat. Sci. and Eng. A324, 2002 pp. 219–224.CrossRef N.Q. Chinh, Gy. Horváth, Zs. Kovács, J. Lendvai, Characterization of plastic instability steps occurring in depth-sensing indentation tests,” Mat. Sci. and Eng. A324, 2002 pp. 219–224.CrossRef
13.
go back to reference A.C. Fischer-Cripps, Introduction to Contact Mechanics, 2nd Ed. Springer-Verlag, New York, 2007. A.C. Fischer-Cripps, Introduction to Contact Mechanics, 2nd Ed. Springer-Verlag, New York, 2007.
14.
go back to reference S. Palmqvist, “A method to determine the toughness of brittle materials, especially hard materials,” Jernkontorets Ann. 141, 1957, pp. 303–307. S. Palmqvist, “A method to determine the toughness of brittle materials, especially hard materials,” Jernkontorets Ann. 141, 1957, pp. 303–307.
15.
go back to reference B.R. Lawn, A.G. Evans, and D.B. Marshall, “Elastic/plastic indentation damage in ceramics: the median/radial crack system,” J. Am. Ceram. Soc. 63, 1980, pp. 574–581.CrossRef B.R. Lawn, A.G. Evans, and D.B. Marshall, “Elastic/plastic indentation damage in ceramics: the median/radial crack system,” J. Am. Ceram. Soc. 63, 1980, pp. 574–581.CrossRef
16.
go back to reference G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I Direct crack measurements,” J. Am. Ceram. Soc. 64 9, 1981, pp. 533–538.CrossRef G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I Direct crack measurements,” J. Am. Ceram. Soc. 64 9, 1981, pp. 533–538.CrossRef
17.
go back to reference M.T. Laugier, “Palmqvist indentation toughness in WC-Co composites,” J. Mater. Sci. Lett. 6, 1987, pp. 897–900.CrossRef M.T. Laugier, “Palmqvist indentation toughness in WC-Co composites,” J. Mater. Sci. Lett. 6, 1987, pp. 897–900.CrossRef
18.
go back to reference F. Ouchterlony, “Stress intensity factors for the expansion loaded star crack,” Eng. Frac. Mechs. 8, 1976, pp. 447–448.CrossRef F. Ouchterlony, “Stress intensity factors for the expansion loaded star crack,” Eng. Frac. Mechs. 8, 1976, pp. 447–448.CrossRef
19.
go back to reference R. Dukino and M.V. Swain, “Comparative measurement of indentation fracture toughness with Berkovich and Vickers indenters,” J. Am. Ceram. Soc. 75 12, 1992, pp. 3299–3304.CrossRef R. Dukino and M.V. Swain, “Comparative measurement of indentation fracture toughness with Berkovich and Vickers indenters,” J. Am. Ceram. Soc. 75 12, 1992, pp. 3299–3304.CrossRef
20.
go back to reference J.S. Field, M.V. Swain, J.D. Dukino, “Determination of fracture toughness from the extra penetration produced by indentation pop-in,” J. Mater. Res. 18 6, 2003, pp. 1412–1416.CrossRef J.S. Field, M.V. Swain, J.D. Dukino, “Determination of fracture toughness from the extra penetration produced by indentation pop-in,” J. Mater. Res. 18 6, 2003, pp. 1412–1416.CrossRef
21.
go back to reference E.R. Petty and H. O’Neill, “Hot hardness values in relation to the physical properties of metals,” Metallurgica, 63, 1961, pp. 25–30. E.R. Petty and H. O’Neill, “Hot hardness values in relation to the physical properties of metals,” Metallurgica, 63, 1961, pp. 25–30.
22.
go back to reference A.G. Atkins and D. Tabor, “Mutual indentation hardness apparatus for use at very high temperatures,” Brit. J. Appl. Phys. 16, 1965, pp. 1015–1021.CrossRef A.G. Atkins and D. Tabor, “Mutual indentation hardness apparatus for use at very high temperatures,” Brit. J. Appl. Phys. 16, 1965, pp. 1015–1021.CrossRef
23.
go back to reference A.G. Atkins and D. Tabor, “Hardness and deformation properties of solids at very high temperatures,” Proc. R. Soc. A292, 1966, pp. 441–459.CrossRef A.G. Atkins and D. Tabor, “Hardness and deformation properties of solids at very high temperatures,” Proc. R. Soc. A292, 1966, pp. 441–459.CrossRef
24.
go back to reference A.G. Atkins and D. Tabor, “The plastic deformation of crossed cylinders and wedges,” J. Inst. Metals, 94, 1966, pp. 107–115. A.G. Atkins and D. Tabor, “The plastic deformation of crossed cylinders and wedges,” J. Inst. Metals, 94, 1966, pp. 107–115.
25.
go back to reference E.A. Payzant, H.W. King, S. Das Gupta, and J.K. Jacobs, “Hot hardness of ceramic cutting tools using depth of penetration measurements,” in Development and Applications of Ceramics and New Metal Alloys, H. Mostaghaci and R.A.L. Drew, eds. Canadian Institute of Mining and Metallurgy, Montreal, 1993. E.A. Payzant, H.W. King, S. Das Gupta, and J.K. Jacobs, “Hot hardness of ceramic cutting tools using depth of penetration measurements,” in Development and Applications of Ceramics and New Metal Alloys, H. Mostaghaci and R.A.L. Drew, eds. Canadian Institute of Mining and Metallurgy, Montreal, 1993.
26.
go back to reference T.R.G. Kutty, C. Ganguly, and D.H. Sastry, “Development of creep curves from hot indentation hardness data,” Scripta Materialia, 34 12, 1996, pp. 1833–1838.CrossRef T.R.G. Kutty, C. Ganguly, and D.H. Sastry, “Development of creep curves from hot indentation hardness data,” Scripta Materialia, 34 12, 1996, pp. 1833–1838.CrossRef
27.
go back to reference T. Suzuki and T. Ohmura, “Ultra-microindentation of silicon at elevated temperatures,” Phil. Mag. A 74 5, 1996, pp.1073–1084.CrossRef T. Suzuki and T. Ohmura, “Ultra-microindentation of silicon at elevated temperatures,” Phil. Mag. A 74 5, 1996, pp.1073–1084.CrossRef
28.
go back to reference S.A. Syed Asif and J.B. Pethica, “Nano-scale indentation creep testing at non-ambient temperatures,” J. Adhesion, 67, 1998, pp. 153–165.CrossRef S.A. Syed Asif and J.B. Pethica, “Nano-scale indentation creep testing at non-ambient temperatures,” J. Adhesion, 67, 1998, pp. 153–165.CrossRef
29.
go back to reference B.D. Beake and J.F. Smith, “High temperature nanoindentation testing of fused silica and other materials,” Phil. Mag. A 82 10, 2002, pp. 2179–2186.CrossRef B.D. Beake and J.F. Smith, “High temperature nanoindentation testing of fused silica and other materials,” Phil. Mag. A 82 10, 2002, pp. 2179–2186.CrossRef
30.
go back to reference A.C. Fischer-Cripps and C. Comte, unpublished work. A.C. Fischer-Cripps and C. Comte, unpublished work.
31.
go back to reference C.A. Schuh, C.E. Packard, and A.C. Lund, “Nanoindentation and contact-mode imaging at high temperatures,” J. Mater. Res. 21 3, 2006, pp. 725–736.CrossRef C.A. Schuh, C.E. Packard, and A.C. Lund, “Nanoindentation and contact-mode imaging at high temperatures,” J. Mater. Res. 21 3, 2006, pp. 725–736.CrossRef
32.
go back to reference A.A. Volinsky, N.R. Moody, and W.W. Gerberich, “Nanoindentation of Au and Pt/Cu thin films at elevated temperatures,” J. Mater. Res. 19 9, 2004, pp. 2650–2657.CrossRef A.A. Volinsky, N.R. Moody, and W.W. Gerberich, “Nanoindentation of Au and Pt/Cu thin films at elevated temperatures,” J. Mater. Res. 19 9, 2004, pp. 2650–2657.CrossRef
33.
go back to reference K. Shinohara, K. Yasuda, M. Yamada, and C. Kinoshita, “Universal method for evaluating work-hardening exponent of metals using ultra-microhardness tests,” Acta. Metall. Mater. 42 11, 1994, pp. 3909–3915.CrossRef K. Shinohara, K. Yasuda, M. Yamada, and C. Kinoshita, “Universal method for evaluating work-hardening exponent of metals using ultra-microhardness tests,” Acta. Metall. Mater. 42 11, 1994, pp. 3909–3915.CrossRef
34.
go back to reference J.H. Ahn and D. Kwon, “Derivation of plastic stress-strain relationship from ball indentations: Examination of strain definition and pileup effect,” J. Mater. Res. 16 11, 2001, pp. 3170–3178.CrossRef J.H. Ahn and D. Kwon, “Derivation of plastic stress-strain relationship from ball indentations: Examination of strain definition and pileup effect,” J. Mater. Res. 16 11, 2001, pp. 3170–3178.CrossRef
35.
go back to reference T.W. Capehart and Y.-T. Cheng, “Determining constitutive models from conical indentation: Sensitivity analysis,” J. Mater. Res. 18 4, 2003, pp. 827–832.CrossRef T.W. Capehart and Y.-T. Cheng, “Determining constitutive models from conical indentation: Sensitivity analysis,” J. Mater. Res. 18 4, 2003, pp. 827–832.CrossRef
36.
go back to reference J.H. Underwood, “Residual stress measurement using surface displacements around an indentation,” Experimental Mechanics, 30, 1973, pp. 373–380.CrossRef J.H. Underwood, “Residual stress measurement using surface displacements around an indentation,” Experimental Mechanics, 30, 1973, pp. 373–380.CrossRef
37.
go back to reference S.G. Roberts, C.W. Lawrence, Y. Bisrat, and P.D. Warren, “Determination of surface residual stresses in brittle materials by Hertzian indentation: Theory and experiment,” J. Am. Ceram. Soc. 82 7, 1999, pp. 1809–1816.CrossRef S.G. Roberts, C.W. Lawrence, Y. Bisrat, and P.D. Warren, “Determination of surface residual stresses in brittle materials by Hertzian indentation: Theory and experiment,” J. Am. Ceram. Soc. 82 7, 1999, pp. 1809–1816.CrossRef
38.
go back to reference M.M. Chaudhri and M.A. Phillips, “Quasi-static cracking of thermally tempered soda-lime glass with spherical and Vickers indenters,” Phil. Mag. A 62 1, 1990, pp. 1–27.CrossRef M.M. Chaudhri and M.A. Phillips, “Quasi-static cracking of thermally tempered soda-lime glass with spherical and Vickers indenters,” Phil. Mag. A 62 1, 1990, pp. 1–27.CrossRef
39.
go back to reference S. Chandrasekar and M.M. Chaudhri, “Indentation cracking in soda-lime glass and Ni-Zn ferrite under Knoop and conical indenters and residual stress measurements,” Phil. Mag. A 67 6, 1993, pp. 1187–1218.CrossRef S. Chandrasekar and M.M. Chaudhri, “Indentation cracking in soda-lime glass and Ni-Zn ferrite under Knoop and conical indenters and residual stress measurements,” Phil. Mag. A 67 6, 1993, pp. 1187–1218.CrossRef
40.
go back to reference A. Bolshakov, W.C. Oliver, and G.M. Pharr, “Influences of stress on the measurement of mechanical properties using nanoindentation. 2. Finite element simulations,” J. Mater. Res. 11 3, 1996, pp. 760–768.CrossRef A. Bolshakov, W.C. Oliver, and G.M. Pharr, “Influences of stress on the measurement of mechanical properties using nanoindentation. 2. Finite element simulations,” J. Mater. Res. 11 3, 1996, pp. 760–768.CrossRef
41.
go back to reference Y.-H. Lee and D. Kwong, “Residual stresses in DLC/Si and Au/Si systems: Application of a stress-relaxation model to nanoindentation technique,” J. Mater. Res. 17 4, 2002, pp. 901–906.CrossRef Y.-H. Lee and D. Kwong, “Residual stresses in DLC/Si and Au/Si systems: Application of a stress-relaxation model to nanoindentation technique,” J. Mater. Res. 17 4, 2002, pp. 901–906.CrossRef
42.
go back to reference A. Taljat and G.M. Pharr, “Measurement of residual stresses by load and depth sensing spherical indentation,” Mat. Res. Soc. Symp. Proc. 594, 2000, pp. 519–524.CrossRef A. Taljat and G.M. Pharr, “Measurement of residual stresses by load and depth sensing spherical indentation,” Mat. Res. Soc. Symp. Proc. 594, 2000, pp. 519–524.CrossRef
43.
go back to reference J.G. Swadener, B. Taljat, and G.M. Pharr, “Measurement of residual stress by load and depth sensing indentation with spherical indenters,” J. Mater. Res. 16 7, 2001, pp. 2091–2102.CrossRef J.G. Swadener, B. Taljat, and G.M. Pharr, “Measurement of residual stress by load and depth sensing indentation with spherical indenters,” J. Mater. Res. 16 7, 2001, pp. 2091–2102.CrossRef
44.
go back to reference K.L. Johnson, K. Kendall, and A.D. Roberts, “Surface energy and the contact of elastic solids,” Proc. R. Soc. A324, 1971, pp. 303–313. K.L. Johnson, K. Kendall, and A.D. Roberts, “Surface energy and the contact of elastic solids,” Proc. R. Soc. A324, 1971, pp. 303–313.
Metadata
Title
Other Techniques in Nanoindentation
Author
Anthony C. Fischer-Cripps
Copyright Year
2011
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-9872-9_9

Premium Partners