Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 1/2018

20-12-2017

Porous Titanium Parts Fabricated by Sintering of TiH2 and Ti Powder Mixtures

Authors: Qin Peng, Bin Yang, Bernd Friedrich

Published in: Journal of Materials Engineering and Performance | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new simple powder metallurgy process by sintering TiH2 powders was used to manufacture porous Ti components. The effects of the processing parameters (pressure of cold isostatic pressing and sintering temperature) and the TiH2/Ti ratio in the powder mixtures on the impurities, the linear shrinkage and the pore properties (including overall and open porosities) were comprehensively determined. The addition of TiH2 as a reactant has been found beneficial for the synthesis of porous Ti components. The formation mechanisms of pores were demonstrated based on the dehydrogenation process of TiH2 during sintering, resulting in highest reactivity due to the “in statu nascendi” generation of the metal. In addition, the hardness and corrosion resistance of all the sintered samples were evaluated, related to the overall and open porosities. As a result, an optimal composition of Ti-40 wt.% TiH2 was defined, as its maximum open porosity was about 23%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Q. Xu, Synthesis, Microstructure and Mechanical Properties of Titanium with Controlled Levels of Porosity, University of Waikato, Hamilton, 2014 Q. Xu, Synthesis, Microstructure and Mechanical Properties of Titanium with Controlled Levels of Porosity, University of Waikato, Hamilton, 2014
2.
go back to reference V.V. Savich, Porous Materials from Titanium Powders: Past, Present, and Future, Powder Metall. Met. Ceram., 2014, 52(11), p 632–643CrossRef V.V. Savich, Porous Materials from Titanium Powders: Past, Present, and Future, Powder Metall. Met. Ceram., 2014, 52(11), p 632–643CrossRef
4.
go back to reference O.M. Ivasishin, V. Anokhin, A. Demidik, and D.G. Savvakin, Cost-Effective Blended Elemental Powder Metallurgy of Titanium Alloys for Transportation Application, Key Eng. Mater., 2000, 188, p 55–62CrossRef O.M. Ivasishin, V. Anokhin, A. Demidik, and D.G. Savvakin, Cost-Effective Blended Elemental Powder Metallurgy of Titanium Alloys for Transportation Application, Key Eng. Mater., 2000, 188, p 55–62CrossRef
5.
go back to reference O. Ivasishin, V. Moxson, M. Qian, and H. Froes, Low-Cost Titanium Hydride Powder Metallurgy, Titanium Powder Metallurgy: Science, Technology and Applications, Q. Ma and F.H. Froes, Ed., Butterworth-Heinemann, London, 2015, p 117–148 CrossRef O. Ivasishin, V. Moxson, M. Qian, and H. Froes, Low-Cost Titanium Hydride Powder Metallurgy, Titanium Powder Metallurgy: Science, Technology and Applications, Q. Ma and F.H. Froes, Ed., Butterworth-Heinemann, London, 2015, p 117–148 CrossRef
6.
go back to reference V.V. Joshi, C. Lavender, V. Moxon, V. Duz, E. Nyberg, and K.S. Weil, Development of Ti-6Al-4V and Ti-1Al-8V-5Fe Alloys Using Low-Cost TiH2 Powder Feedstock, J. Mater. Eng. Perform., 2012, 22(4), p 995–1003CrossRef V.V. Joshi, C. Lavender, V. Moxon, V. Duz, E. Nyberg, and K.S. Weil, Development of Ti-6Al-4V and Ti-1Al-8V-5Fe Alloys Using Low-Cost TiH2 Powder Feedstock, J. Mater. Eng. Perform., 2012, 22(4), p 995–1003CrossRef
7.
go back to reference J. Oh, K. Heo, W. Kim, G. Choi, and J. Lim, Sintering Properties of Ti-6Al-4V Alloys Prepared Using Ti/TiH2 Powders, Mater. Trans., 2013, 54(1), p 119–121CrossRef J. Oh, K. Heo, W. Kim, G. Choi, and J. Lim, Sintering Properties of Ti-6Al-4V Alloys Prepared Using Ti/TiH2 Powders, Mater. Trans., 2013, 54(1), p 119–121CrossRef
8.
go back to reference V. Macin and H.J. Christ, Influence of Hydride-Induced Microstructure Modification on Mechanical Properties of Metastable Beta Titanium Alloy Ti 10V-2Fe-3Al, Int. J. Hydrog. Energy, 2015, 40(47), p 16878–16891CrossRef V. Macin and H.J. Christ, Influence of Hydride-Induced Microstructure Modification on Mechanical Properties of Metastable Beta Titanium Alloy Ti 10V-2Fe-3Al, Int. J. Hydrog. Energy, 2015, 40(47), p 16878–16891CrossRef
9.
go back to reference B. Sharma, S.K. Vajpai, and K. Ameyama, Microstructure and Properties of Beta Ti-Nb Alloy Prepared by Powder Metallurgy Route Using Titanium Hydride Powder, J. Alloys Compd., 2016, 656, p 978–986CrossRef B. Sharma, S.K. Vajpai, and K. Ameyama, Microstructure and Properties of Beta Ti-Nb Alloy Prepared by Powder Metallurgy Route Using Titanium Hydride Powder, J. Alloys Compd., 2016, 656, p 978–986CrossRef
10.
go back to reference A.R. Kennedy and V.H. Lopez, The Decomposition Behavior of as-Received and Oxidized TiH2 Foaming-Agent Powder, Mater. Sci. Eng. A, 2003, 357(1–2), p 258–263CrossRef A.R. Kennedy and V.H. Lopez, The Decomposition Behavior of as-Received and Oxidized TiH2 Foaming-Agent Powder, Mater. Sci. Eng. A, 2003, 357(1–2), p 258–263CrossRef
11.
go back to reference H.R.Z. Sandim, B.V. Morante, and P.A. Suzuki, Kinetics of Thermal Decomposition of Titanium Hydride Powder Using In Situ High-Temperature X-ray Diffraction (HTXRD), Mater. Res., 2005, 8(3), p 293–297CrossRef H.R.Z. Sandim, B.V. Morante, and P.A. Suzuki, Kinetics of Thermal Decomposition of Titanium Hydride Powder Using In Situ High-Temperature X-ray Diffraction (HTXRD), Mater. Res., 2005, 8(3), p 293–297CrossRef
12.
go back to reference B. Matijasevic-Lux, J. Banhart, S. Fiechter, O. Görke, and N. Wanderka, Modification of Titanium Hydride for Improved Aluminium Foam Manufacture, Acta Mater., 2006, 54(7), p 1887–1900CrossRef B. Matijasevic-Lux, J. Banhart, S. Fiechter, O. Görke, and N. Wanderka, Modification of Titanium Hydride for Improved Aluminium Foam Manufacture, Acta Mater., 2006, 54(7), p 1887–1900CrossRef
13.
go back to reference B. Neirinck, J. Fransaer, O. Van der Biest, J. Vleugels, Slip Casting of Titanium and Titanium Hydride Stabilized Emulsions for the Production of Porous Bulk Titanium, in Proceedings of the EuroPM 2009 Powder Metallurgy Congress & Exhibition (2009) B. Neirinck, J. Fransaer, O. Van der Biest, J. Vleugels, Slip Casting of Titanium and Titanium Hydride Stabilized Emulsions for the Production of Porous Bulk Titanium, in Proceedings of the EuroPM 2009 Powder Metallurgy Congress & Exhibition (2009)
14.
go back to reference Y. Zhao, M. Taya, Processing of Porous NiTi by Spark Plasma Sintering Method, in Smart Structures and Materials (International Society for Optics and Photonics, 2006) Y. Zhao, M. Taya, Processing of Porous NiTi by Spark Plasma Sintering Method, in Smart Structures and Materials (International Society for Optics and Photonics, 2006)
15.
go back to reference Y.W. Gu, M.S. Yong, B.Y. Tay, and C.S. Lim, Synthesis and Bioactivity of Porous Ti Alloy Prepared by Foaming with TiH2, Mater. Sci. Eng. C, 2009, 29(5), p 1515–1520CrossRef Y.W. Gu, M.S. Yong, B.Y. Tay, and C.S. Lim, Synthesis and Bioactivity of Porous Ti Alloy Prepared by Foaming with TiH2, Mater. Sci. Eng. C, 2009, 29(5), p 1515–1520CrossRef
16.
go back to reference S. Wu, X. Liu, K.W. Yeung, T. Hu, Z. Xu, J.C. Chung, and P.K. Chu, Hydrogen Release from Titanium Hydride in Foaming of Orthopedic NiTi Scaffolds, Acta Biomater., 2011, 7(3), p 1387–1397CrossRef S. Wu, X. Liu, K.W. Yeung, T. Hu, Z. Xu, J.C. Chung, and P.K. Chu, Hydrogen Release from Titanium Hydride in Foaming of Orthopedic NiTi Scaffolds, Acta Biomater., 2011, 7(3), p 1387–1397CrossRef
17.
go back to reference V. Duz, O. Ivasishin, C. Lavender, V. Moxson, V. Telin, Innovative Powder Metallurgy Process for Producing Low Cost Titanium and Titanium and Titanium Alloy Components, in 24th Annual ITA Conference & Exhibition (Las Vegas, Nevada, USA, 2008) V. Duz, O. Ivasishin, C. Lavender, V. Moxson, V. Telin, Innovative Powder Metallurgy Process for Producing Low Cost Titanium and Titanium and Titanium Alloy Components, in 24th Annual ITA Conference & Exhibition (Las Vegas, Nevada, USA, 2008)
18.
go back to reference C.R.F. Azevedo, D. Rodrigues, and F.B. Neto, Ti-Al-V Powder Metallurgy (PM) Via the Hydrogenation–Dehydrogenation (HDH) Process, J. Alloys Compd., 2003, 353(1–2), p 217–227CrossRef C.R.F. Azevedo, D. Rodrigues, and F.B. Neto, Ti-Al-V Powder Metallurgy (PM) Via the Hydrogenation–Dehydrogenation (HDH) Process, J. Alloys Compd., 2003, 353(1–2), p 217–227CrossRef
19.
go back to reference Z.S. Rak and J. Walter, Porous Titanium Foil by Tape Casting Technique, J. Mater. Process. Technol., 2006, 175(1–3), p 358–363CrossRef Z.S. Rak and J. Walter, Porous Titanium Foil by Tape Casting Technique, J. Mater. Process. Technol., 2006, 175(1–3), p 358–363CrossRef
20.
go back to reference H.T. Wang, M. Lefler, Z.Z. Fang, T. Lei, S.M. Fang, J.M. Zhang, and Q. Zhao, Titanium and Titanium Alloy Via Sintering of TiH2, Key Eng. Mater., 2010, 436, p 157–163CrossRef H.T. Wang, M. Lefler, Z.Z. Fang, T. Lei, S.M. Fang, J.M. Zhang, and Q. Zhao, Titanium and Titanium Alloy Via Sintering of TiH2, Key Eng. Mater., 2010, 436, p 157–163CrossRef
21.
go back to reference K.S. Weil, E.A. Nyberg, and K.L. Simmons, Use of a Naphthalene-Based Binder in Injection Molding Net-Shape Titanium Components of Controlled Porosity, Mater. Trans., 2005, 46(7), p 1525–1531CrossRef K.S. Weil, E.A. Nyberg, and K.L. Simmons, Use of a Naphthalene-Based Binder in Injection Molding Net-Shape Titanium Components of Controlled Porosity, Mater. Trans., 2005, 46(7), p 1525–1531CrossRef
22.
go back to reference D.-W. Lee, H.-S. Lee, J.-H. Park, S.-M. Shin, and J.-P. Wang, Sintering of Titanium Hydride Powder Compaction, Procedia Manuf., 2015, 2, p 550–557CrossRef D.-W. Lee, H.-S. Lee, J.-H. Park, S.-M. Shin, and J.-P. Wang, Sintering of Titanium Hydride Powder Compaction, Procedia Manuf., 2015, 2, p 550–557CrossRef
23.
go back to reference Q. Ye, Z.-M. Guo, J.-L. Bai, B.-X. Lu, J.-P. Lin, J.-J. Hao, J. Luo, and H.-P. Shao, Gelcasting of Titanium Hydride to Fabricate Low-Cost Titanium, Rare Met., 2015, 34(5), p 351–356CrossRef Q. Ye, Z.-M. Guo, J.-L. Bai, B.-X. Lu, J.-P. Lin, J.-J. Hao, J. Luo, and H.-P. Shao, Gelcasting of Titanium Hydride to Fabricate Low-Cost Titanium, Rare Met., 2015, 34(5), p 351–356CrossRef
24.
go back to reference C. Wang, L. Pan, Y. Zhang, S. Xiao, and Y. Chen, Deoxidization Mechanism of Hydrogen in TiH2 Dehydrogenation Process, Int. J. Hydrog. Energy, 2016, 41(33), p 14836–14841CrossRef C. Wang, L. Pan, Y. Zhang, S. Xiao, and Y. Chen, Deoxidization Mechanism of Hydrogen in TiH2 Dehydrogenation Process, Int. J. Hydrog. Energy, 2016, 41(33), p 14836–14841CrossRef
25.
go back to reference S.-W. Yook, B.-H. Yoon, H.-E. Kim, Y.-H. Koh, and Y.-S. Kim, Porous Titanium (Ti) Scaffolds by Freezing TiH2/Camphene Slurries, Mater. Lett., 2008, 62(30), p 4506–4508CrossRef S.-W. Yook, B.-H. Yoon, H.-E. Kim, Y.-H. Koh, and Y.-S. Kim, Porous Titanium (Ti) Scaffolds by Freezing TiH2/Camphene Slurries, Mater. Lett., 2008, 62(30), p 4506–4508CrossRef
26.
go back to reference A. Ibrahim, F. Zhang, E. Otterstein, and E. Burkel, Processing of Porous Ti and Ti5Mn Foams by Spark Plasma Sintering, Mater. Des., 2011, 32(1), p 146–153CrossRef A. Ibrahim, F. Zhang, E. Otterstein, and E. Burkel, Processing of Porous Ti and Ti5Mn Foams by Spark Plasma Sintering, Mater. Des., 2011, 32(1), p 146–153CrossRef
27.
go back to reference Q. Peng, B. Yang, L. Liu, C. Song, and B. Friedrich, Porous TiAl Alloys Fabricated by Sintering of TiH2 and Al Powder Mixtures, J. Alloys Compd., 2016, 656, p 530–538CrossRef Q. Peng, B. Yang, L. Liu, C. Song, and B. Friedrich, Porous TiAl Alloys Fabricated by Sintering of TiH2 and Al Powder Mixtures, J. Alloys Compd., 2016, 656, p 530–538CrossRef
28.
go back to reference Q. Ma, Cold Compaction and Sintering of Titanium and Its Alloys for Near-Net-Shape or Preform Fabrication, Int. J. Powder Metall., 2010, 46(5), p 29–44 Q. Ma, Cold Compaction and Sintering of Titanium and Its Alloys for Near-Net-Shape or Preform Fabrication, Int. J. Powder Metall., 2010, 46(5), p 29–44
29.
go back to reference ISO 2738:1999, Sintered Metal Materials, Excluding Hardmetals—Permeable Sintered Metal Materials—Determination of Density, Oil Content and Open Porosity (International Organization for Standardization, Geneva) ISO 2738:1999, Sintered Metal Materials, Excluding Hardmetals—Permeable Sintered Metal Materials—Determination of Density, Oil Content and Open Porosity (International Organization for Standardization, Geneva)
30.
go back to reference H. Liu, P. He, J.C. Feng, and J. Cao, Kinetic Study on Nonisothermal Dehydrogenation of TiH2 Powders, Int. J. Hydrog. Energy, 2009, 34(7), p 3018–3025CrossRef H. Liu, P. He, J.C. Feng, and J. Cao, Kinetic Study on Nonisothermal Dehydrogenation of TiH2 Powders, Int. J. Hydrog. Energy, 2009, 34(7), p 3018–3025CrossRef
31.
go back to reference E. Illeková, J. Harnúšková, R. Florek, F. Simančík, I. Maťko, and P. Švec, Peculiarities of TiH2 Decomposition, J. Therm. Anal. Calorim., 2010, 105(2), p 583–590CrossRef E. Illeková, J. Harnúšková, R. Florek, F. Simančík, I. Maťko, and P. Švec, Peculiarities of TiH2 Decomposition, J. Therm. Anal. Calorim., 2010, 105(2), p 583–590CrossRef
32.
go back to reference M. Ma, L. Liang, L. Wang, Y. Wang, Y. Cheng, B. Tang, W. Xiang, and X. Tan, Phase Transformations of Titanium Hydride in Thermal Desorption Process with Different Heating Rates, Int. J. Hydrog. Energy, 2015, 40(29), p 8926–8934CrossRef M. Ma, L. Liang, L. Wang, Y. Wang, Y. Cheng, B. Tang, W. Xiang, and X. Tan, Phase Transformations of Titanium Hydride in Thermal Desorption Process with Different Heating Rates, Int. J. Hydrog. Energy, 2015, 40(29), p 8926–8934CrossRef
33.
go back to reference V. Bhosle, E. Baburaj, M. Miranova, and K. Salama, Dehydrogenation of TiH2, Mater. Sci. Eng. A, 2003, 356(1), p 190–199CrossRef V. Bhosle, E. Baburaj, M. Miranova, and K. Salama, Dehydrogenation of TiH2, Mater. Sci. Eng. A, 2003, 356(1), p 190–199CrossRef
34.
go back to reference K. Kawasaki, T. Sugita, and S. Ebisawa, Adsorption, Surface Reaction, and Mutual Displacement of CO, CO2 and O2 on Titanium Film, Surf. Sci., 1967, 7, p 502–506CrossRef K. Kawasaki, T. Sugita, and S. Ebisawa, Adsorption, Surface Reaction, and Mutual Displacement of CO, CO2 and O2 on Titanium Film, Surf. Sci., 1967, 7, p 502–506CrossRef
35.
go back to reference K. Kawasaki, N. Hayashi, S. Ebisawa, and T. Sugita, Adsorption of CO, O2 and CO2 on Titanium Film by Electrical Conductivity Measurements, Jpn. J. Appl. Phys., 1971, 10(10), p 1359CrossRef K. Kawasaki, N. Hayashi, S. Ebisawa, and T. Sugita, Adsorption of CO, O2 and CO2 on Titanium Film by Electrical Conductivity Measurements, Jpn. J. Appl. Phys., 1971, 10(10), p 1359CrossRef
36.
go back to reference S.W. Kim, H.-D. Jung, M.-H. Kang, H.-E. Kim, Y.-H. Koh, and Y. Estrin, Fabrication of Porous Titanium Scaffold with Controlled Porous Structure and Net-Shape Using Magnesium as Spacer, Mater. Sci. Eng. C, 2013, 33(5), p 2808–2815CrossRef S.W. Kim, H.-D. Jung, M.-H. Kang, H.-E. Kim, Y.-H. Koh, and Y. Estrin, Fabrication of Porous Titanium Scaffold with Controlled Porous Structure and Net-Shape Using Magnesium as Spacer, Mater. Sci. Eng. C, 2013, 33(5), p 2808–2815CrossRef
37.
go back to reference J.-H. Lee, H.-E. Kim, K.-H. Shin, and Y.-H. Koh, Improving the Strength and Biocompatibility of Porous Titanium Scaffolds by Creating Elongated Pores Coated with a Bioactive, Nanoporous TiO2 Layer, Mater. Lett., 2010, 64(22), p 2526–2529CrossRef J.-H. Lee, H.-E. Kim, K.-H. Shin, and Y.-H. Koh, Improving the Strength and Biocompatibility of Porous Titanium Scaffolds by Creating Elongated Pores Coated with a Bioactive, Nanoporous TiO2 Layer, Mater. Lett., 2010, 64(22), p 2526–2529CrossRef
38.
go back to reference A. Zhecheva, W. Sha, S. Malinov, and A. Long, Enhancing the Microstructure and Properties of Titanium Alloys Through Nitriding and Other Surface Engineering Methods, Surf. Coat. Technol., 2005, 200(7), p 2192–2207CrossRef A. Zhecheva, W. Sha, S. Malinov, and A. Long, Enhancing the Microstructure and Properties of Titanium Alloys Through Nitriding and Other Surface Engineering Methods, Surf. Coat. Technol., 2005, 200(7), p 2192–2207CrossRef
39.
go back to reference Alloy Phase Diagrams. Handbook, Aerospace Structural Metals, vol. 3 (ASM Int. Mater. Park, Ohio, 1992) Alloy Phase Diagrams. Handbook, Aerospace Structural Metals, vol. 3 (ASM Int. Mater. Park, Ohio, 1992)
40.
go back to reference C. Jiménez, F. Garcia-Moreno, A. Rack, R. Tucoulou, M. Klaus, B. Pfretzschner, T. Rack, P. Cloetens, and J. Banhart, Partial Decomposition of TiH2 Studied In Situ by Energy-Dispersive Diffraction and Ex Situ by Diffraction Microtomography of Hard X-ray Synchrotron Radiation, Scr. Mater., 2012, 66(10), p 757–760CrossRef C. Jiménez, F. Garcia-Moreno, A. Rack, R. Tucoulou, M. Klaus, B. Pfretzschner, T. Rack, P. Cloetens, and J. Banhart, Partial Decomposition of TiH2 Studied In Situ by Energy-Dispersive Diffraction and Ex Situ by Diffraction Microtomography of Hard X-ray Synchrotron Radiation, Scr. Mater., 2012, 66(10), p 757–760CrossRef
41.
go back to reference C. Jiménez, F. Garcia-Moreno, B. Pfretzschner, M. Klaus, M. Wollgarten, I. Zizak, G. Schumacher, M. Tovar, and J. Banhart, Decomposition of TiH2 Studied In Situ by Synchrotron X-ray and Neutron Diffraction, Acta Mater., 2011, 59(16), p 6318–6330CrossRef C. Jiménez, F. Garcia-Moreno, B. Pfretzschner, M. Klaus, M. Wollgarten, I. Zizak, G. Schumacher, M. Tovar, and J. Banhart, Decomposition of TiH2 Studied In Situ by Synchrotron X-ray and Neutron Diffraction, Acta Mater., 2011, 59(16), p 6318–6330CrossRef
42.
go back to reference K. Asaoka, N. Kuwayama, O. Okuno, and I. Miura, Mechanical Properties and Biomechanical Compatibility of Porous Titanium for Dental Implants, J. Biomed. Mater. Res., 1985, 19(6), p 699–713CrossRef K. Asaoka, N. Kuwayama, O. Okuno, and I. Miura, Mechanical Properties and Biomechanical Compatibility of Porous Titanium for Dental Implants, J. Biomed. Mater. Res., 1985, 19(6), p 699–713CrossRef
43.
go back to reference N. Tuncer, G. Arslan, E. Maire, and L. Salvo, Investigation of Spacer Size Effect on Architecture and Mechanical Properties of Porous Titanium, Mater. Sci. Eng. A, 2011, 530, p 633–642CrossRef N. Tuncer, G. Arslan, E. Maire, and L. Salvo, Investigation of Spacer Size Effect on Architecture and Mechanical Properties of Porous Titanium, Mater. Sci. Eng. A, 2011, 530, p 633–642CrossRef
44.
go back to reference H.H. Hausner and O.V. Roman, Linear Shrinkage of Metal Powder Compacts During Sintering, Sov. Powder Metall. Met. Ceram., 1965, 3(3), p 180–184CrossRef H.H. Hausner and O.V. Roman, Linear Shrinkage of Metal Powder Compacts During Sintering, Sov. Powder Metall. Met. Ceram., 1965, 3(3), p 180–184CrossRef
45.
go back to reference S.D. Luo, M. Yan, G.B. Schaffer, and M. Qian, Sintering of Titanium in Vacuum by Microwave Radiation, Metall. Mater. Trans. A, 2011, 42(8), p 2466–2474CrossRef S.D. Luo, M. Yan, G.B. Schaffer, and M. Qian, Sintering of Titanium in Vacuum by Microwave Radiation, Metall. Mater. Trans. A, 2011, 42(8), p 2466–2474CrossRef
46.
go back to reference T. Watanabe, The Sintering Phenomenon of Titanium Powders-A Discussion, Int. J. Powder Metall. Powder Technol., 1976, 12, p 209–214 T. Watanabe, The Sintering Phenomenon of Titanium Powders-A Discussion, Int. J. Powder Metall. Powder Technol., 1976, 12, p 209–214
47.
go back to reference A. Stuijts, Synthesis of Materials from Powders by Sintering, Annu. Rev. Mater. Sci., 1973, 3(1), p 363–395CrossRef A. Stuijts, Synthesis of Materials from Powders by Sintering, Annu. Rev. Mater. Sci., 1973, 3(1), p 363–395CrossRef
48.
go back to reference H.E. Exner and G. Petzow, A Critical Assessment of Porosity Coarsening During Solid State Sintering, Adv. Sci. Technol., 2006, 45, p 539–548CrossRef H.E. Exner and G. Petzow, A Critical Assessment of Porosity Coarsening During Solid State Sintering, Adv. Sci. Technol., 2006, 45, p 539–548CrossRef
49.
go back to reference H.E. Exner and C. Müller, Particle Rearrangement and Pore Space Coarsening During Solid-State Sintering, J. Am. Ceram. Soc., 2009, 92(7), p 1384–1390CrossRef H.E. Exner and C. Müller, Particle Rearrangement and Pore Space Coarsening During Solid-State Sintering, J. Am. Ceram. Soc., 2009, 92(7), p 1384–1390CrossRef
50.
go back to reference R.L. Coble, Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models, J. Appl. Phys., 1961, 32(5), p 787–792CrossRef R.L. Coble, Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models, J. Appl. Phys., 1961, 32(5), p 787–792CrossRef
51.
go back to reference Magdalena. Dlapka, Herbert. Danninger, Chistian. Gierl, and Björn. Lindqvist, Defining the Pores in PM Components, Met. Powder Rep., 2010, 65(2), p 30–33CrossRef Magdalena. Dlapka, Herbert. Danninger, Chistian. Gierl, and Björn. Lindqvist, Defining the Pores in PM Components, Met. Powder Rep., 2010, 65(2), p 30–33CrossRef
52.
go back to reference J. Breme, E. Eisenbarth, and V. Biehl, Titanium and its alloys for medical applications, Titanium and Titanium Alloys, C. Leyens and M. Peters, Ed., Wiley, New York, 2005, p 423–451 CrossRef J. Breme, E. Eisenbarth, and V. Biehl, Titanium and its alloys for medical applications, Titanium and Titanium Alloys, C. Leyens and M. Peters, Ed., Wiley, New York, 2005, p 423–451 CrossRef
53.
go back to reference Y.-B.P. Kwan and J.R. Alcock, The Impact of Water Impregnation Method on the Accuracy of Open Porosity Measurements, J. Mater. Sci., 2002, 37, p 2557–2561CrossRef Y.-B.P. Kwan and J.R. Alcock, The Impact of Water Impregnation Method on the Accuracy of Open Porosity Measurements, J. Mater. Sci., 2002, 37, p 2557–2561CrossRef
54.
go back to reference R. Machaka and H.K. Chikwanda, Analysis of the Cold Compaction Behavior of Titanium Powders: A Comprehensive Inter-Model Comparison Study of Compaction Equations, Metall. Mater. Trans. A, 2015, 46(9), p 4286–4297CrossRef R. Machaka and H.K. Chikwanda, Analysis of the Cold Compaction Behavior of Titanium Powders: A Comprehensive Inter-Model Comparison Study of Compaction Equations, Metall. Mater. Trans. A, 2015, 46(9), p 4286–4297CrossRef
55.
go back to reference J.M. Montes, J.A. Rodríguez, F.G. Cuevas, and J. Cintas, Consolidation by Electrical Resistance Sintering of Ti Powder, J. Mater. Sci., 2011, 46(15), p 5197–5207CrossRef J.M. Montes, J.A. Rodríguez, F.G. Cuevas, and J. Cintas, Consolidation by Electrical Resistance Sintering of Ti Powder, J. Mater. Sci., 2011, 46(15), p 5197–5207CrossRef
56.
go back to reference J. Capek and D. Vojtech, Microstructural and Mechanical Characteristics of Porous Iron Prepared by Powder Metallurgy, Mater. Sci. Eng. C, 2014, 43, p 494–501CrossRef J. Capek and D. Vojtech, Microstructural and Mechanical Characteristics of Porous Iron Prepared by Powder Metallurgy, Mater. Sci. Eng. C, 2014, 43, p 494–501CrossRef
57.
go back to reference E. Baril, L. Lefebvre, and Y. Thomas, Interstitial Elements in Titanium Powder Metallurgy: Sources and Control, Powder Metall., 2011, 54(3), p 183–186CrossRef E. Baril, L. Lefebvre, and Y. Thomas, Interstitial Elements in Titanium Powder Metallurgy: Sources and Control, Powder Metall., 2011, 54(3), p 183–186CrossRef
58.
go back to reference R.G. Neves, B. Ferrari, A.J. Sanchez-Herencia, and E. Gordo, Colloidal Approach for the Design of Ti Powders Sinterable at Low Temperature, Mater. Lett., 2013, 107, p 75–78CrossRef R.G. Neves, B. Ferrari, A.J. Sanchez-Herencia, and E. Gordo, Colloidal Approach for the Design of Ti Powders Sinterable at Low Temperature, Mater. Lett., 2013, 107, p 75–78CrossRef
59.
go back to reference S. Ozbilen, D. Liebert, T. Beck, and M. Bram, Fatigue Behavior of Highly Porous Titanium Produced by Powder Metallurgy with Temporary Space Holders, Mater. Sci. Eng. C, 2016, 60, p 446–457CrossRef S. Ozbilen, D. Liebert, T. Beck, and M. Bram, Fatigue Behavior of Highly Porous Titanium Produced by Powder Metallurgy with Temporary Space Holders, Mater. Sci. Eng. C, 2016, 60, p 446–457CrossRef
60.
go back to reference F.B. Mainier, L.P.C. Monteiro, S.S.M. Tavares, F.R. Leta, and J.M. Pardal, Evaluation of Titanium in Hydrochloric Acid Solutions Containing Corrosion Inhibitors, IOSR J. Mech. Civ. Eng., 2013, 10(1), p 66–69CrossRef F.B. Mainier, L.P.C. Monteiro, S.S.M. Tavares, F.R. Leta, and J.M. Pardal, Evaluation of Titanium in Hydrochloric Acid Solutions Containing Corrosion Inhibitors, IOSR J. Mech. Civ. Eng., 2013, 10(1), p 66–69CrossRef
Metadata
Title
Porous Titanium Parts Fabricated by Sintering of TiH2 and Ti Powder Mixtures
Authors
Qin Peng
Bin Yang
Bernd Friedrich
Publication date
20-12-2017
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 1/2018
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-3099-3

Other articles of this Issue 1/2018

Journal of Materials Engineering and Performance 1/2018 Go to the issue

Premium Partners