Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 9/2015

01.09.2015

Analysis of the Cold Compaction Behavior of Titanium Powders: A Comprehensive Inter-model Comparison Study of Compaction Equations

verfasst von: Ronald Machaka, Hilda K. Chikwanda

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 9/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A brief background to compaction equations and their application to titanium powder is presented. The behavior and mechanisms of densification in selected titanium powders is critically analyzed by means of a comprehensive inter-model comparison of existing compaction equations. The results are discussed in terms of the comparative evaluation of cold uniaxial compaction tests of sponge Ti, CP TiH2, CP Grade 2 Ti, and TiH2-SS316L nanocomposite powder samples, which were conducted at applied compaction pressures of up to 1250 MPa.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Froes, F. H., Mashl, S. J., Hebeisen, J. C., Moxson, V. S. & Duz, V. A. The technologies of titanium powder metallurgy. JOM 56, 46–48 (2004).CrossRef Froes, F. H., Mashl, S. J., Hebeisen, J. C., Moxson, V. S. & Duz, V. A. The technologies of titanium powder metallurgy. JOM 56, 46–48 (2004).CrossRef
2.
Zurück zum Zitat Qian, M. Cold compaction and sintering of titanium and its alloys for near-net-shape or preform fabrication. Int. J. Powder Metall. 46, 29–44 (2010). Qian, M. Cold compaction and sintering of titanium and its alloys for near-net-shape or preform fabrication. Int. J. Powder Metall. 46, 29–44 (2010).
3.
Zurück zum Zitat Enneti, R. K., Lusin, A., Kumar, S., German, R. M. & Atre, S. V. Effects of lubricant on green strength, compressibility and ejection of parts in die compaction process. Powder Technol. 233, 22–29 (2013).CrossRef Enneti, R. K., Lusin, A., Kumar, S., German, R. M. & Atre, S. V. Effects of lubricant on green strength, compressibility and ejection of parts in die compaction process. Powder Technol. 233, 22–29 (2013).CrossRef
4.
Zurück zum Zitat Panelli, R., Filho, F. A. & Ambrozio Filho, F. A study of a new phenomenological compacting equation. Powder Technol. 114, 255–61 (2001).CrossRef Panelli, R., Filho, F. A. & Ambrozio Filho, F. A study of a new phenomenological compacting equation. Powder Technol. 114, 255–61 (2001).CrossRef
5.
Zurück zum Zitat R.M. German: Powder Metallurgy and Particulate Materials Processing, Metal Powder Industries Federation, Princeton, 2005. R.M. German: Powder Metallurgy and Particulate Materials Processing, Metal Powder Industries Federation, Princeton, 2005.
6.
Zurück zum Zitat E.M. Borisovskaya, V.A. Nazarenko, Y.N. Podrezov, O.S. Koryak, Y.I. Evich, and V.F. Gorban: Powder Metall. Met. Ceram. 47, 406–13 (2008).CrossRef E.M. Borisovskaya, V.A. Nazarenko, Y.N. Podrezov, O.S. Koryak, Y.I. Evich, and V.F. Gorban: Powder Metall. Met. Ceram. 47, 406–13 (2008).CrossRef
7.
Zurück zum Zitat Lim, J. B., Bettles, C. J., Muddle, B. C. & Park, N. K. Effects of Impurity Elements on Green Strength of Powder Compacts. Mater. Sci. Forum 654-656, 811–14 (2010).CrossRef Lim, J. B., Bettles, C. J., Muddle, B. C. & Park, N. K. Effects of Impurity Elements on Green Strength of Powder Compacts. Mater. Sci. Forum 654-656, 811–14 (2010).CrossRef
8.
Zurück zum Zitat Chikosha, S., Shabalala, T. C. & Chikwanda, H. K. Effect of particle morphology and size on roll compaction of Ti-based powders. Powder Technol. 264, 310–19 (2014).CrossRef Chikosha, S., Shabalala, T. C. & Chikwanda, H. K. Effect of particle morphology and size on roll compaction of Ti-based powders. Powder Technol. 264, 310–19 (2014).CrossRef
9.
Zurück zum Zitat Jimoh, A., Sigalas, I. & Hermann, M. Densification of titanium (Ti) from titanium hydride (TiH2) powder through dehydrogenation and pressureless sintering Process. J. Sci. Technol. Math. Educ. 7, 42–52 (2011). Jimoh, A., Sigalas, I. & Hermann, M. Densification of titanium (Ti) from titanium hydride (TiH2) powder through dehydrogenation and pressureless sintering Process. J. Sci. Technol. Math. Educ. 7, 42–52 (2011).
10.
Zurück zum Zitat K.K. Sobiyi: MSc Dissertation, University of Stellenbosch, 2011. K.K. Sobiyi: MSc Dissertation, University of Stellenbosch, 2011.
11.
Zurück zum Zitat Esteban, P. G., Thomas, Y., Baril, E., Ruiz-Navas, E. M. & Gordo, E. Study of compaction and ejection of hydrided-dehydrided titanium powder. Met. Mater. Int. 17, 45–55 (2011).CrossRef Esteban, P. G., Thomas, Y., Baril, E., Ruiz-Navas, E. M. & Gordo, E. Study of compaction and ejection of hydrided-dehydrided titanium powder. Met. Mater. Int. 17, 45–55 (2011).CrossRef
12.
Zurück zum Zitat Gerdemann, S. J. & Jablonski, P. D. Compaction of Titanium Powders. Metall. Mater. Trans. A 42, 1325–33 (2010). Gerdemann, S. J. & Jablonski, P. D. Compaction of Titanium Powders. Metall. Mater. Trans. A 42, 1325–33 (2010).
13.
Zurück zum Zitat R. Frykholm and H. Vidarsson: Ti Alloys in PM Applications, World Congress PM2014 in Orlando, USA MPFI, 2014. R. Frykholm and H. Vidarsson: Ti Alloys in PM Applications, World Congress PM2014 in Orlando, USA MPFI, 2014.
14.
Zurück zum Zitat W. Chen, Y. Yamamoto, W.H. Peter, M.B. Clark, S.D. Nunn, J.O. Kiggans, T.R. Muth, C.A. Blue, J.C. Williams, and K. Akhtar: J. Alloys Compd. 541, 440–47 (2012).CrossRef W. Chen, Y. Yamamoto, W.H. Peter, M.B. Clark, S.D. Nunn, J.O. Kiggans, T.R. Muth, C.A. Blue, J.C. Williams, and K. Akhtar: J. Alloys Compd. 541, 440–47 (2012).CrossRef
15.
Zurück zum Zitat Gronostajski, Z., Bandoła, P. & Skubiszewski, T. Influence of cold and hot pressing on densification behaviour of titanium alloy powder Ti6Al4V. Arch. Civ. Mech. Eng. 9, 47–57 (2009).CrossRef Gronostajski, Z., Bandoła, P. & Skubiszewski, T. Influence of cold and hot pressing on densification behaviour of titanium alloy powder Ti6Al4V. Arch. Civ. Mech. Eng. 9, 47–57 (2009).CrossRef
16.
Zurück zum Zitat W. Chen, Y. Yamamoto, W.H. Peter, S.B. Gorti, A.S. Sabau, M.B. Clark, S.D. Nunn, J.O. Kiggans, C.A. Blue, J.C. Williams, B. Fuller, and K. Akhtar: Powder Technol. 214, 194–99 (2011).CrossRef W. Chen, Y. Yamamoto, W.H. Peter, S.B. Gorti, A.S. Sabau, M.B. Clark, S.D. Nunn, J.O. Kiggans, C.A. Blue, J.C. Williams, B. Fuller, and K. Akhtar: Powder Technol. 214, 194–99 (2011).CrossRef
17.
Zurück zum Zitat Y. Yamamoto, J.O. Kiggans, M.B. Clark, S.D. Nunn, A.S. Sabau, and W.H. Peter: Key Eng. Mater. 436, 103–111 (2010).CrossRef Y. Yamamoto, J.O. Kiggans, M.B. Clark, S.D. Nunn, A.S. Sabau, and W.H. Peter: Key Eng. Mater. 436, 103–111 (2010).CrossRef
18.
Zurück zum Zitat D.F. Khan, H. Yin, H. Li, X. Qu, M. Khan, S. Ali, and M.Z. Iqbal: Mater. Des. 50, 479–83 (2013).CrossRef D.F. Khan, H. Yin, H. Li, X. Qu, M. Khan, S. Ali, and M.Z. Iqbal: Mater. Des. 50, 479–83 (2013).CrossRef
19.
Zurück zum Zitat Hong, S.-T., Hovanski, Y., Lavender, C. A. & Weil, K. S. Investigation of Die Stress Profiles During Powder Compaction Using Instrumented Die. J. Mater. Eng. Perform. 17, 382–86 (2008).CrossRef Hong, S.-T., Hovanski, Y., Lavender, C. A. & Weil, K. S. Investigation of Die Stress Profiles During Powder Compaction Using Instrumented Die. J. Mater. Eng. Perform. 17, 382–86 (2008).CrossRef
20.
Zurück zum Zitat Neves, R. G., Ferrari, B., Sanchez-Herencia, A. J. & Gordo, E. Colloidal approach for the design of Ti powders sinterable at low temperature. Mater. Lett. 107, 75–78 (2013).CrossRef Neves, R. G., Ferrari, B., Sanchez-Herencia, A. J. & Gordo, E. Colloidal approach for the design of Ti powders sinterable at low temperature. Mater. Lett. 107, 75–78 (2013).CrossRef
21.
Zurück zum Zitat Lou, J., Gabbitas, B. & Zhang, D. Improving the uniformity in mechanical properties of a sintered Ti compact using a trace amount of internal lubricant. J. Mater. Process. Technol. 214, 1798–1805 (2014).CrossRef Lou, J., Gabbitas, B. & Zhang, D. Improving the uniformity in mechanical properties of a sintered Ti compact using a trace amount of internal lubricant. J. Mater. Process. Technol. 214, 1798–1805 (2014).CrossRef
22.
Zurück zum Zitat J. Lou and B. Gabbitas: International Titanium Powder Processing, Consolidation and Metallurgy Conference TiDA, 2013. J. Lou and B. Gabbitas: International Titanium Powder Processing, Consolidation and Metallurgy Conference TiDA, 2013.
23.
Zurück zum Zitat D.P. Mondal, J. Datta Majumder, N. Jha, A. Badkul, S. Das, A. Patel, and G. Gupta: Mater. Des. 34, 82–89 (2012).CrossRef D.P. Mondal, J. Datta Majumder, N. Jha, A. Badkul, S. Das, A. Patel, and G. Gupta: Mater. Des. 34, 82–89 (2012).CrossRef
24.
Zurück zum Zitat Laptev, A., Vyal, O., Bram, M., Buchkremer, H. P. & Stöver, D. Green strength of powder compacts provided for production of highly porous titanium parts. Powder Metall. 48, 358–64 (2005).CrossRef Laptev, A., Vyal, O., Bram, M., Buchkremer, H. P. & Stöver, D. Green strength of powder compacts provided for production of highly porous titanium parts. Powder Metall. 48, 358–64 (2005).CrossRef
25.
Zurück zum Zitat Machaka, R. & Chikwanda, H. K. An Experimental Evaluation of the Gerdemann–Jablonski Compaction Equation. Metall. Mater. Trans. A 46, 2194–2200 (2015).CrossRef Machaka, R. & Chikwanda, H. K. An Experimental Evaluation of the Gerdemann–Jablonski Compaction Equation. Metall. Mater. Trans. A 46, 2194–2200 (2015).CrossRef
26.
Zurück zum Zitat Walker, E. E. The properties of powders. Part VI. The compressibility of powders. Trans. Faraday Soc. 19, 73–82 (1923).CrossRef Walker, E. E. The properties of powders. Part VI. The compressibility of powders. Trans. Faraday Soc. 19, 73–82 (1923).CrossRef
27.
Zurück zum Zitat Bal’shin, M. Y. Contribution to the theory of powder metallurgical processes. Vestn. Met. 18, 124–47 (1938). Bal’shin, M. Y. Contribution to the theory of powder metallurgical processes. Vestn. Met. 18, 124–47 (1938).
28.
Zurück zum Zitat Bockstiegel, G. Modern developments in powder metallurgy. Proc. Int. Powder Met. Conf. 1, 155–87 (1966). Bockstiegel, G. Modern developments in powder metallurgy. Proc. Int. Powder Met. Conf. 1, 155–87 (1966).
29.
Zurück zum Zitat Denny, P. J. Compaction equations: a comparison of the Heckel and Kawakita equations. Powder Technol. 127, 162–72 (2002).CrossRef Denny, P. J. Compaction equations: a comparison of the Heckel and Kawakita equations. Powder Technol. 127, 162–72 (2002).CrossRef
30.
Zurück zum Zitat Fischmeister, H. F. & Arzt, E. Densification of powders by particle deformation. Powder Metall. 26, 82–86 (1983).CrossRef Fischmeister, H. F. & Arzt, E. Densification of powders by particle deformation. Powder Metall. 26, 82–86 (1983).CrossRef
31.
Zurück zum Zitat W.D. Jones: Fundamental Principles of Powder Metallurgy, Edward Arnold Publishers Ltd., London, 1960. W.D. Jones: Fundamental Principles of Powder Metallurgy, Edward Arnold Publishers Ltd., London, 1960.
32.
Zurück zum Zitat Heckel, R. W. Density-pressure relationships in powder compaction. Trans. Met. Soc. AIME 221, 671–75 (1961). Heckel, R. W. Density-pressure relationships in powder compaction. Trans. Met. Soc. AIME 221, 671–75 (1961).
33.
Zurück zum Zitat Panelli, R. & Ambrozio Filho, F. Compaction equation and its use to describe powder consolidation behaviour. Powder Metall. 41, 131–X (1998).CrossRef Panelli, R. & Ambrozio Filho, F. Compaction equation and its use to describe powder consolidation behaviour. Powder Metall. 41, 131–X (1998).CrossRef
34.
Zurück zum Zitat Ge, R. D. Constitutive model for hot pressing of powders. J. Mater. Sci. Technol. 10, 374–380 (1994). Ge, R. D. Constitutive model for hot pressing of powders. J. Mater. Sci. Technol. 10, 374–380 (1994).
35.
Zurück zum Zitat Shapiro, I. Compaction of powders X. Development of a general compaction equation. in Advances in Powder Metallurgy and Particulate Materials 3, 229–43 (1993). Shapiro, I. Compaction of powders X. Development of a general compaction equation. in Advances in Powder Metallurgy and Particulate Materials 3, 229–43 (1993).
36.
Zurück zum Zitat Kawakita, K. & Lüdde, K.-H. Some considerations on powder compression equations. Powder Technol. 4, 61–68 (1971).CrossRef Kawakita, K. & Lüdde, K.-H. Some considerations on powder compression equations. Powder Technol. 4, 61–68 (1971).CrossRef
37.
Zurück zum Zitat Adams, M. J. & McKeown, R. Micromechanical analyses of the pressure-volume relationship for powders under confined uniaxial compression. Powder Technol. 88, 155–63 (1996).CrossRef Adams, M. J. & McKeown, R. Micromechanical analyses of the pressure-volume relationship for powders under confined uniaxial compression. Powder Technol. 88, 155–63 (1996).CrossRef
38.
Zurück zum Zitat Van der Zwan, J. & Siskens, C. A. M. The compaction and mechanical properties of agglomerated materials. Powder Technol. 33, 43–54 (1982).CrossRef Van der Zwan, J. & Siskens, C. A. M. The compaction and mechanical properties of agglomerated materials. Powder Technol. 33, 43–54 (1982).CrossRef
39.
Zurück zum Zitat Sivasankaran, S., Sivaprasad, K., Narayanasamy, R., Iyer, V. K. & Kumar, V. Evaluation of compaction equations and prediction using adaptive neuro-fuzzy inference system on compressibility behavior of AA 6061(100−x) - x wt% TiO2 nanocomposites prepared by mechanical alloying. Powder Technol. 209, 124–37 (2011).CrossRef Sivasankaran, S., Sivaprasad, K., Narayanasamy, R., Iyer, V. K. & Kumar, V. Evaluation of compaction equations and prediction using adaptive neuro-fuzzy inference system on compressibility behavior of AA 6061(100−x) - x wt% TiO2 nanocomposites prepared by mechanical alloying. Powder Technol. 209, 124–37 (2011).CrossRef
40.
Zurück zum Zitat Cooper, A. R. & Eaton, L. E. Compaction behavior of several ceramic powders. J. Am. Ceram. Soc. 45, 97–101 (1962).CrossRef Cooper, A. R. & Eaton, L. E. Compaction behavior of several ceramic powders. J. Am. Ceram. Soc. 45, 97–101 (1962).CrossRef
42.
Zurück zum Zitat Liu, X., Hu, L. & Wang, E. Cold compaction behavior of nano-structured Nd–Fe–B alloy powders prepared by different processes. J. Alloys Compd. 551, 682–87 (2013).CrossRef Liu, X., Hu, L. & Wang, E. Cold compaction behavior of nano-structured Nd–Fe–B alloy powders prepared by different processes. J. Alloys Compd. 551, 682–87 (2013).CrossRef
43.
Zurück zum Zitat P.Y. Huang: Powder Metallurgy Principle, Metallurgical Industry Press, Beijing, 1982. P.Y. Huang: Powder Metallurgy Principle, Metallurgical Industry Press, Beijing, 1982.
44.
Zurück zum Zitat Sonnergaard, J. M. Investigation of a new mathematical model for compression of pharmaceutical powders. Eur. J. Pharm. Sci. 14, 149–57 (2001).CrossRef Sonnergaard, J. M. Investigation of a new mathematical model for compression of pharmaceutical powders. Eur. J. Pharm. Sci. 14, 149–57 (2001).CrossRef
45.
Zurück zum Zitat Hafizpour, H. R., Simchi, A. & Parvizi, S. Analysis of the compaction behavior of Al–SiC nanocomposites using linear and non-linear compaction equations. Adv. Powder Technol. 21, 273–78 (2010).CrossRef Hafizpour, H. R., Simchi, A. & Parvizi, S. Analysis of the compaction behavior of Al–SiC nanocomposites using linear and non-linear compaction equations. Adv. Powder Technol. 21, 273–78 (2010).CrossRef
46.
Zurück zum Zitat Ahamed, H. & Senthilkumar, V. Consolidation behavior of mechanically alloyed aluminum based nanocomposites reinforced with nanoscale Y2O3/Al2O3 particles. Mater. Charact. 62, 1235–49 (2011).CrossRef Ahamed, H. & Senthilkumar, V. Consolidation behavior of mechanically alloyed aluminum based nanocomposites reinforced with nanoscale Y2O3/Al2O3 particles. Mater. Charact. 62, 1235–49 (2011).CrossRef
47.
Zurück zum Zitat Katsuyoshi, K. & Ryuzo, W. Analysis of Warm Compaction Behavior of Iron Powder Particles via Cooper-Eaton Equation. Trans. JWRI 35, 47–51 (2006). Katsuyoshi, K. & Ryuzo, W. Analysis of Warm Compaction Behavior of Iron Powder Particles via Cooper-Eaton Equation. Trans. JWRI 35, 47–51 (2006).
48.
Zurück zum Zitat Abdoli, H., Salahi, E., Farnoush, H. & Pourazrang, K. Evolutions during synthesis of Al-AlN-nanostructured composite powder by mechanical alloying. J. Alloys Compd. 461, 166–72 (2008).CrossRef Abdoli, H., Salahi, E., Farnoush, H. & Pourazrang, K. Evolutions during synthesis of Al-AlN-nanostructured composite powder by mechanical alloying. J. Alloys Compd. 461, 166–72 (2008).CrossRef
49.
Zurück zum Zitat Adapa, P., Tabil, L. & Schoenau, G. Compaction characteristics of barley, canola, oat and wheat straw. Biosyst. Eng. 104, 335–44 (2009).CrossRef Adapa, P., Tabil, L. & Schoenau, G. Compaction characteristics of barley, canola, oat and wheat straw. Biosyst. Eng. 104, 335–44 (2009).CrossRef
50.
Zurück zum Zitat Mallick, S. Rearrangement of particle and compactibility, tabletability and compressibility of pharmaceutical powder : A rational approach. J. Sci. Indusctrial Res. 73, 51–56 (2014). Mallick, S. Rearrangement of particle and compactibility, tabletability and compressibility of pharmaceutical powder : A rational approach. J. Sci. Indusctrial Res. 73, 51–56 (2014).
51.
Zurück zum Zitat Jeyasimman, D., Sivaprasad, K., Sivasankaran, S. & Narayanasamy, R. Fabrication and consolidation behavior of Al 6061 nanocomposite powders reinforced by multi-walled carbon nanotubes. Powder Technol. 258, 189–97 (2014).CrossRef Jeyasimman, D., Sivaprasad, K., Sivasankaran, S. & Narayanasamy, R. Fabrication and consolidation behavior of Al 6061 nanocomposite powders reinforced by multi-walled carbon nanotubes. Powder Technol. 258, 189–97 (2014).CrossRef
52.
Zurück zum Zitat P. Paronen and J. Llkka: in Pharmaceutical Powder Compaction Technology, G. Alderborn and C. Nystrom, eds., CRC Press, New York, 1995, pp. 55–75. DOI:10.1201/b14207-4. P. Paronen and J. Llkka: in Pharmaceutical Powder Compaction Technology, G. Alderborn and C. Nystrom, eds., CRC Press, New York, 1995, pp. 55–75. DOI:10.​1201/​b14207-4.
53.
Zurück zum Zitat ASTM D7481—09 Standard Test Methods for Determining Loose and Tapped Bulk Densities of Powders using a Graduated Cylinder. 04.09, 2009. DOI:10.1520/D7481-09. ASTM D7481—09 Standard Test Methods for Determining Loose and Tapped Bulk Densities of Powders using a Graduated Cylinder. 04.09, 2009. DOI:10.​1520/​D7481-09.
55.
Zurück zum Zitat Abdoli, H., Farnoush, H., Salahi, E. & Pourazrang, K. Study of the densification of a nanostructured composite powder: Part 1: Effect of compaction pressure and reinforcement addition. Mater. Sci. Eng. A 486, 580–84 (2008).CrossRef Abdoli, H., Farnoush, H., Salahi, E. & Pourazrang, K. Study of the densification of a nanostructured composite powder: Part 1: Effect of compaction pressure and reinforcement addition. Mater. Sci. Eng. A 486, 580–84 (2008).CrossRef
56.
Zurück zum Zitat Sivasankaran, S., Sivaprasad, K., Narayanasamy, R. & Iyer, V. K. An investigation on flowability and compressibility of AA 6061(100−x)-x wt% TiO2 micro and nanocomposite powder prepared by blending and mechanical alloying. Powder Technol. 201, 70–82 (2010).CrossRef Sivasankaran, S., Sivaprasad, K., Narayanasamy, R. & Iyer, V. K. An investigation on flowability and compressibility of AA 6061(100−x)-x wt% TiO2 micro and nanocomposite powder prepared by blending and mechanical alloying. Powder Technol. 201, 70–82 (2010).CrossRef
57.
Zurück zum Zitat Sonnergaard, J. M. A critical evaluation of the Heckel equation. Int. J. Pharm. 193, 63–71 (1999).CrossRef Sonnergaard, J. M. A critical evaluation of the Heckel equation. Int. J. Pharm. 193, 63–71 (1999).CrossRef
58.
Zurück zum Zitat Razavi Hesabi, Z., Hafizpour, H. R. & Simchi, A. An investigation on the compressibility of aluminum/nano-alumina composite powder prepared by blending and mechanical milling. Mater. Sci. Eng. A 454-455, 89–98 (2007).CrossRef Razavi Hesabi, Z., Hafizpour, H. R. & Simchi, A. An investigation on the compressibility of aluminum/nano-alumina composite powder prepared by blending and mechanical milling. Mater. Sci. Eng. A 454-455, 89–98 (2007).CrossRef
59.
Zurück zum Zitat Asgharzadeh, H., Simchi, A. & Kim, H. S. A plastic-yield compaction model for nanostructured Al6063 alloy and Al6063/Al2O3 nanocomposite powder. Powder Technol. 211, 215–20 (2011).CrossRef Asgharzadeh, H., Simchi, A. & Kim, H. S. A plastic-yield compaction model for nanostructured Al6063 alloy and Al6063/Al2O3 nanocomposite powder. Powder Technol. 211, 215–20 (2011).CrossRef
60.
Zurück zum Zitat Phani, K. K. & Sanyal, D. A new approach for estimation of Poisson’s ratio of porous powder compacts. J. Mater. Sci. 42, 8120–25 (2007).CrossRef Phani, K. K. & Sanyal, D. A new approach for estimation of Poisson’s ratio of porous powder compacts. J. Mater. Sci. 42, 8120–25 (2007).CrossRef
61.
Zurück zum Zitat Greaves, G. N., Greer, A. L., Lakes, R. S. & Rouxel, T. Poisson’s ratio and modern materials. Nat. Mater. 10, 823–37 (2011).CrossRef Greaves, G. N., Greer, A. L., Lakes, R. S. & Rouxel, T. Poisson’s ratio and modern materials. Nat. Mater. 10, 823–37 (2011).CrossRef
62.
Zurück zum Zitat DeLo, D. P., Dutton, R. E. & Semiatin, S. L. A comparison of discrete element model predictions to observations of metal powder consolidation. Scripta Mater. 40, 1103–09 (1999).CrossRef DeLo, D. P., Dutton, R. E. & Semiatin, S. L. A comparison of discrete element model predictions to observations of metal powder consolidation. Scripta Mater. 40, 1103–09 (1999).CrossRef
63.
Zurück zum Zitat S.L. Semiatin, R.E. Dutton, and S. Shamasundar: in Processing and Fabrication of Advanced Materials IV, vol. 39, T.S. Srivatsan, and J.J. Moore, eds., TMS, Warrendale, 1996). S.L. Semiatin, R.E. Dutton, and S. Shamasundar: in Processing and Fabrication of Advanced Materials IV, vol. 39, T.S. Srivatsan, and J.J. Moore, eds., TMS, Warrendale, 1996).
64.
Zurück zum Zitat Martin, L. P., Hodge, A. M. & Campbell, G. H. Compaction behavior of uniaxially cold-pressed Bi–Ta composites. Scripta Mater. 57, 229–32 (2007).CrossRef Martin, L. P., Hodge, A. M. & Campbell, G. H. Compaction behavior of uniaxially cold-pressed Bi–Ta composites. Scripta Mater. 57, 229–32 (2007).CrossRef
65.
Zurück zum Zitat Klevan, I., Nordström, J., Bauer-Brandl, A. & Alderborn, G. On the physical interpretation of the initial bending of a Shapiro-Konopicky-Heckel compression profile. Eur. J. Pharm. Biopharm. 71, 395–401 (2009).CrossRef Klevan, I., Nordström, J., Bauer-Brandl, A. & Alderborn, G. On the physical interpretation of the initial bending of a Shapiro-Konopicky-Heckel compression profile. Eur. J. Pharm. Biopharm. 71, 395–401 (2009).CrossRef
Metadaten
Titel
Analysis of the Cold Compaction Behavior of Titanium Powders: A Comprehensive Inter-model Comparison Study of Compaction Equations
verfasst von
Ronald Machaka
Hilda K. Chikwanda
Publikationsdatum
01.09.2015
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 9/2015
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-015-3038-6

Weitere Artikel der Ausgabe 9/2015

Metallurgical and Materials Transactions A 9/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.