Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

21-03-2020 | Original Paper | Issue 4/2020

Numerical Algorithms 4/2020

RMVPIA: a new algorithm for computing the Lagrange multivariate polynomial interpolation

Journal:
Numerical Algorithms > Issue 4/2020
Authors:
M. Errachid, A. Essanhaji, A. Messaoudi
Important notes

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The problems of univariate polynomial interpolation of Lagrange or Hermite have been treated by several recent researches (Gasca and Lopez-Carmona J. Approx. Theory. 34 361–374 1982; Messaoudi et al. Numer. Algorithms J 80, 253–278 2019; Messaoudi and Sadok Numer. Algorithms J 76, 675–694 2017; Muhlbach Numer. Math. 31, 97–110 1978). The study of the multivariate polynomial interpolation is more difficult and the approaches are less obvious (Gasca and Lopez-Carmona J. Approx. Theory. 34, 361–374 1982; Gasca and Sauer 2000; Lorentz 2000; Muhlbach Numer. Math. 31, 97–110 1978; Neidinger Siam Rev. 61, 361–381 2019). In Gasca and Sauer (2000), there are a large number of interesting theoretical ideas developed around the theme in the last years of the last century. The numerical schemes proposed are based on the Newton formulas. Recently in (Siam Rev. 61, 361–381 2019), R.D Neidinger has studied the multivariate polynomial interpolation problem using the techniques of Newton’s polynomial interpolation and the divided difference. In this work, we propose another approach to study the problem of the Lagrange multivariate polynomial interpolation in a particular case where the set of the interpolation nodes is a grid. Indeed, to solve this problem, we will use the Schur complement (Brezinski J. Comput. Appl. Math. 9, 369–376 1983; Brezinski Linear Algebra Appl. 111, 231–247 1988; Cottle Linear Algebra Appl. 8, 189–211 1974; Ouellette Linear Algebra Appl. 36, 187–295 1981; Schur J. Reine. Angew. Math. 147, 205–232 1917) and we will give a new algorithm for computing the interpolating polynomial which will be called the Recursive MultiVariate Polynomial Interpolation Algorithm: RMVPIA. A simplified version and some properties of this algorithm will be also studied and some examples will be given.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 4/2020

Numerical Algorithms 4/2020 Go to the issue

Premium Partner

    Image Credits