Skip to main content
Top
Published in: Mechanics of Composite Materials 5/2023

06-11-2023

Shear Buckling Mode and Failure of Flat Fiber-Reinforced Specimens Under Axial Compression 1. Refined Nonlinear Mathematical Deformation Model

Authors: V. N. Paimushin, M. V. Makarov, S. A. Kholmogorov, N. V. Polyakova

Published in: Mechanics of Composite Materials | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An improved mathematical model was constructed to describe the geometrically and physically nonlinear deformation of specimens of a fiber-reinforced plastic with a rectangular cross-section. The specimens had thin elastic side tabs on the clamping ends in the test fixture to transfer the external load to the specimens in kinematic loadings (by the friction forces that arise between the tabs and rigid elements of the test fixture). The specimens had the form of a three-layered rod. For the tabs, the S. P. Timoshenko shear model taking into account the transverse compression was used. For the middle layer across the thickness, a linear approximation for the transverse displacement and a cubic approximation for the axial displacement were accepted. The kinematic relations and equilibrium equations of the theory were obtained based on geometrically nonlinear relations of elasticity theory in a simplified quadratic approximation. They contained geometrically nonlinear terms that, having the necessary degree of accuracy and content, make it possible to identify the classical bending and nonclassical transverse shear buckling modes of the specimens during their compression tests. For unidirectional fiber-reinforced plastics, the physical nonlinearity was taken into account only in the relationship between the transverse shear stress and the corresponding shear strain. When compressing a [±45] fiber-reinforced plastic, the physical nonlinearity was also taken into account in the relation between the normal stress in the specimen cross-section and the corresponding axial strain.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. N. Polilov, Etudes on the Mechanics of Composites [in Russian], FIZMATLIT, Moscow (2015). A. N. Polilov, Etudes on the Mechanics of Composites [in Russian], FIZMATLIT, Moscow (2015).
2.
go back to reference M. Xie and D. F. Adams, “Effect of loading method on compression testing of composite materials,” J. Compos. Mater., 29, No. 12, 1581-1600 (1995).CrossRef M. Xie and D. F. Adams, “Effect of loading method on compression testing of composite materials,” J. Compos. Mater., 29, No. 12, 1581-1600 (1995).CrossRef
5.
go back to reference D. F. Adams and E. M. Odom, “Influence of specimens tabs of the compressive strength of a unidirectional composite material,” J. Compos. Mater., 25, 774-786 (1991).CrossRef D. F. Adams and E. M. Odom, “Influence of specimens tabs of the compressive strength of a unidirectional composite material,” J. Compos. Mater., 25, 774-786 (1991).CrossRef
6.
go back to reference D. F. Adams and E. Q. Lewis, “Influence of specimens gage length and loading method on the axial compressive strength of a unidirectional composite material,” Exp. Mech., 3, 14-20 (1991).CrossRef D. F. Adams and E. Q. Lewis, “Influence of specimens gage length and loading method on the axial compressive strength of a unidirectional composite material,” Exp. Mech., 3, 14-20 (1991).CrossRef
7.
go back to reference M. Xie and D. F. Adams, “Effect of loading method on compression testing of composite materials,” J. Compos. Mater., 29, No. 12, 1581-1600 (1995).CrossRef M. Xie and D. F. Adams, “Effect of loading method on compression testing of composite materials,” J. Compos. Mater., 29, No. 12, 1581-1600 (1995).CrossRef
8.
go back to reference M. Xie and D. F. Adams, “Plasticity model for unidirectional composite materials and its applications in modeling composites testing,” Compos. Sci. Technol., 54, 11-21 (1995).CrossRef M. Xie and D. F. Adams, “Plasticity model for unidirectional composite materials and its applications in modeling composites testing,” Compos. Sci. Technol., 54, 11-21 (1995).CrossRef
9.
go back to reference E. M. Odom and D. F. Adams, “Failure modes of unidirectional carbon/epoxy composite compression specimens,” Composites, 21, No. 4, 289-296 (1990).CrossRef E. M. Odom and D. F. Adams, “Failure modes of unidirectional carbon/epoxy composite compression specimens,” Composites, 21, No. 4, 289-296 (1990).CrossRef
16.
go back to reference A. Puck and H. Shurmann, “Failure analysis of FRP laminates by means of physically based phenomenological models,” Compos. Sci. Technol., 58, 1045-1067 (1998).CrossRef A. Puck and H. Shurmann, “Failure analysis of FRP laminates by means of physically based phenomenological models,” Compos. Sci. Technol., 58, 1045-1067 (1998).CrossRef
19.
go back to reference A. N. Guz, Stability of Elastic Bodies at Finite Deformations [in Russian], Naukova Dumka, Kyiv (1973). A. N. Guz, Stability of Elastic Bodies at Finite Deformations [in Russian], Naukova Dumka, Kyiv (1973).
20.
go back to reference V. V. Bolotin and Yu. N. Novichkov, Mechanics of Multilayer Structures [in Russian], Mashinostroenie, Moscow (1980). V. V. Bolotin and Yu. N. Novichkov, Mechanics of Multilayer Structures [in Russian], Mashinostroenie, Moscow (1980).
21.
go back to reference Reference Book on Composite Materials: In 2 books. Book 2, Ed. J. Lubin; translated. from English. A. B. Geller and others; Under the editorship of B. E. Geller, Mashinostroenie, Moscow (1988). Reference Book on Composite Materials: In 2 books. Book 2, Ed. J. Lubin; translated. from English. A. B. Geller and others; Under the editorship of B. E. Geller, Mashinostroenie, Moscow (1988).
22.
go back to reference J. A. Suarez, J. B. Whiteside, and R. N. Hadcock, The Influence of Local Failure Modes on the Compressive Strength of Boron. Epoxy Compos., ASTM Special Technical Publication (1972). J. A. Suarez, J. B. Whiteside, and R. N. Hadcock, The Influence of Local Failure Modes on the Compressive Strength of Boron. Epoxy Compos., ASTM Special Technical Publication (1972).
23.
go back to reference B. W. Rosen, “Mechanics of composite reinforcement.” In: Fiber composite materials: papers presented at a seminar of the American Society for Metals, October 17 and 18, Metals Park, Ohio: American Society for Metals, 1964, 37-75 (1965). B. W. Rosen, “Mechanics of composite reinforcement.” In: Fiber composite materials: papers presented at a seminar of the American Society for Metals, October 17 and 18, Metals Park, Ohio: American Society for Metals, 1964, 37-75 (1965).
24.
go back to reference B. Budiansky and N. A. Fleck, “Compressive failure of fiber composites,” J. Mech. Phys. Solids, 41, No. 1, 183-211 (1993).CrossRef B. Budiansky and N. A. Fleck, “Compressive failure of fiber composites,” J. Mech. Phys. Solids, 41, No. 1, 183-211 (1993).CrossRef
25.
go back to reference A. Jumahat, C. Soutis, F. R. Jones, and A. Hodzic, “Fracture mechanisms and failure analysis of carbon fiber/toughened epoxy composites subjected to compressive loading,” Compos. Struct., 92, 295-305 (2010).CrossRef A. Jumahat, C. Soutis, F. R. Jones, and A. Hodzic, “Fracture mechanisms and failure analysis of carbon fiber/toughened epoxy composites subjected to compressive loading,” Compos. Struct., 92, 295-305 (2010).CrossRef
26.
go back to reference N. K. Naik and R. S. Kumar, “Compressive strength of unidirectional composites: evaluation and comparison of prediction models,” Compos. Struct., 46, 299-308 (1999).CrossRef N. K. Naik and R. S. Kumar, “Compressive strength of unidirectional composites: evaluation and comparison of prediction models,” Compos. Struct., 46, 299-308 (1999).CrossRef
27.
go back to reference K. Niu and R. Talreja, “Modeling of compressive failure in fiber reinforced composites,” Int. J. Solids Struct., 37, No. 17, 2405-2428 (2000).CrossRef K. Niu and R. Talreja, “Modeling of compressive failure in fiber reinforced composites,” Int. J. Solids Struct., 37, No. 17, 2405-2428 (2000).CrossRef
28.
go back to reference 28 P. Davidson and A. M. Waas, “Mechanics of kinking in fiber-reinforced composites under compressive loading,” Math. Mech. Solids., 21, No. 6, 667-684 (2016).CrossRef 28 P. Davidson and A. M. Waas, “Mechanics of kinking in fiber-reinforced composites under compressive loading,” Math. Mech. Solids., 21, No. 6, 667-684 (2016).CrossRef
29.
go back to reference S. Pimenta, R. Gutkin, S. T. Pinho, and P. Robinson, “A micromechanical model for kink-band formation: Part I – Experimental study and numerical modeling,” Compos. Sci. Technol., 69, No. 7-8, 948-955 (2009).CrossRef S. Pimenta, R. Gutkin, S. T. Pinho, and P. Robinson, “A micromechanical model for kink-band formation: Part I – Experimental study and numerical modeling,” Compos. Sci. Technol., 69, No. 7-8, 948-955 (2009).CrossRef
30.
go back to reference G. Zhang and R. A. Latour Jr., “An analytical and numerical study of fiber microbuckling,” Compos. Sci. Technol., 51, No. 1, 95-109 (1994).CrossRef G. Zhang and R. A. Latour Jr., “An analytical and numerical study of fiber microbuckling,” Compos. Sci. Technol., 51, No. 1, 95-109 (1994).CrossRef
34.
go back to reference V. N. Paimushin, “Refined models for an analysis of internal and external buckling modes of a monolayer in a layered composite,” Mech. Compos. Mater., 53, No. 5, 613-630 (2017).CrossRef V. N. Paimushin, “Refined models for an analysis of internal and external buckling modes of a monolayer in a layered composite,” Mech. Compos. Mater., 53, No. 5, 613-630 (2017).CrossRef
35.
go back to reference V. N. Paimushin, S. A. Kholmogorov, and R. K. Gazizullin, “Mechanics of unidirectional fiber-reinforced composites: buckling modes and failure under compression along fibers.,” Mech. Compos. Mater., 53, No. 6, 737-752 (2018).CrossRef V. N. Paimushin, S. A. Kholmogorov, and R. K. Gazizullin, “Mechanics of unidirectional fiber-reinforced composites: buckling modes and failure under compression along fibers.,” Mech. Compos. Mater., 53, No. 6, 737-752 (2018).CrossRef
36.
go back to reference V. N. Paimushin, S. A. Kholmogorov, M. V. Makarov, D. V. Tarlakovskii, and A. Lukaszewicz, “Mechanics of fiber composites: Forms of loss of stability and fracture of specimens resulting from three-point bending tests,” Z. Angew. Math. Mech (2019); 99:e201800063CrossRef V. N. Paimushin, S. A. Kholmogorov, M. V. Makarov, D. V. Tarlakovskii, and A. Lukaszewicz, “Mechanics of fiber composites: Forms of loss of stability and fracture of specimens resulting from three-point bending tests,” Z. Angew. Math. Mech (2019); 99:e201800063CrossRef
37.
go back to reference V. N. Paimushin and V. I. Shalashilin, “A consistent version of the theory of deformations of continuous media in the quadratic approximation,” Dokl. RAN, 396, No. 4, 492-495 (2004). V. N. Paimushin and V. I. Shalashilin, “A consistent version of the theory of deformations of continuous media in the quadratic approximation,” Dokl. RAN, 396, No. 4, 492-495 (2004).
38.
go back to reference V. N. Paimushin and V. I. Shalashilin, “On relationships in the theory of deformations in the quadratic approximation and problems of constructing refined versions of the geometrically nonlinear theory of layered structural elements,” Prikl. Mat. i Mekh., 69, No. 5, 861-881 (2005). V. N. Paimushin and V. I. Shalashilin, “On relationships in the theory of deformations in the quadratic approximation and problems of constructing refined versions of the geometrically nonlinear theory of layered structural elements,” Prikl. Mat. i Mekh., 69, No. 5, 861-881 (2005).
39.
go back to reference M. B. Vakhitov, “Integrating matrices apparatus for the numerical solution of differential equations of structural mechanics,” Izv. Univ. Aviats. Tekhn., No. 3, 50-61 (1966). M. B. Vakhitov, “Integrating matrices apparatus for the numerical solution of differential equations of structural mechanics,” Izv. Univ. Aviats. Tekhn., No. 3, 50-61 (1966).
Metadata
Title
Shear Buckling Mode and Failure of Flat Fiber-Reinforced Specimens Under Axial Compression 1. Refined Nonlinear Mathematical Deformation Model
Authors
V. N. Paimushin
M. V. Makarov
S. A. Kholmogorov
N. V. Polyakova
Publication date
06-11-2023
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 5/2023
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10140-8

Other articles of this Issue 5/2023

Mechanics of Composite Materials 5/2023 Go to the issue

Premium Partners