Skip to main content
Erschienen in: Mechanics of Composite Materials 6/2018

11.01.2018

Mechanics of Unidirectional Fiber-Reinforced Composites: Buckling Modes and Failure Under Compression Along Fibers

verfasst von: V. N. Paimushin, S. A. Kholmogorov, R. K. Gazizullin

Erschienen in: Mechanics of Composite Materials | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One-dimensional linearized problems on the possible buckling modes of an internal or peripheral layer of unidirectional multilayer composites with rectilinear fibers under compression in the fiber direction are considered. The investigations are carried out using the known Kirchhoff–Love and Timoshenko models for the layers. The binder, modeled as an elastic foundation, is described by the equations of elasticity theory, which are simplified in accordance to the model of a transversely soft layer and are integrated along the transverse coordinate considering the kinematic coupling relations for a layer and foundation layers. Exact analytical solutions of the problems formulated are found, which are used to calculate a composite made of an HSE 180 REM prepreg based on a unidirectional carbon fiber tape. The possible buckling modes of its internal and peripheral layers are identified. Calculation results are compared with experimental data obtained earlier. It is concluded that, for the composite studied, the flexural buckling of layers in the uniform axial compression of specimens along fibers is impossible — the failure mechanism is delamination with buckling of a fiber bundle according to the pure shear mode. It is realized (due to the low average transverse shear modulus) at the value of the ultimate compression stress equal to the average shear modulus. It is shown that such a shear buckling mode can be identified only on the basis of equations constructed using the Timoshenko shear model to describe the deformation process of layers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Jumahat, C. Soutis, F. R. Jones, and A. Hodzic, “Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading,” Compos. Struct., 92, 295-305 (2010).CrossRef A. Jumahat, C. Soutis, F. R. Jones, and A. Hodzic, “Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading,” Compos. Struct., 92, 295-305 (2010).CrossRef
2.
Zurück zum Zitat D. F. Adams and E. M. Odom, “Effect of specimen tabs on the compressive strength of a unidirectional composite material,” J. Compos. Mater., 25, 774-786 (1991).CrossRef D. F. Adams and E. M. Odom, “Effect of specimen tabs on the compressive strength of a unidirectional composite material,” J. Compos. Mater., 25, 774-786 (1991).CrossRef
3.
Zurück zum Zitat D. F. Adams and E. Q. Lewis, “Effect of specimen gage length and loading method on the axial compressive strength of a unidirectional material,” Exp. Mech., 31, Iss. 1, 14-20 (1991). D. F. Adams and E. Q. Lewis, “Effect of specimen gage length and loading method on the axial compressive strength of a unidirectional material,” Exp. Mech., 31, Iss. 1, 14-20 (1991).
4.
Zurück zum Zitat M. Xie and D. F. Adams, “Effect of loading method on compression testing of composite materials,” J. Compos. Mater., 29, No. 12, 1581-1600 (1995).CrossRef M. Xie and D. F. Adams, “Effect of loading method on compression testing of composite materials,” J. Compos. Mater., 29, No. 12, 1581-1600 (1995).CrossRef
5.
Zurück zum Zitat D. F. Adams and M. Xie, “A plasticity model for unidirectional composite materials and its applications in modeling composite testing,” Compos. Sci. Technol., 54, Iss. 1, 11-21 (1995). D. F. Adams and M. Xie, “A plasticity model for unidirectional composite materials and its applications in modeling composite testing,” Compos. Sci. Technol., 54, Iss. 1, 11-21 (1995).
6.
Zurück zum Zitat D. F. Adams and G. A. Finley, “Experimental study of thickness-tapered unidirectional composite compression specimens,” Exp. Mech., 36, No. 4, 345-352 (1996).CrossRef D. F. Adams and G. A. Finley, “Experimental study of thickness-tapered unidirectional composite compression specimens,” Exp. Mech., 36, No. 4, 345-352 (1996).CrossRef
7.
Zurück zum Zitat C. R. Schultheisz and A. M. Waas Compressive failure of composites, Part I: Testing and micromechanical theories //Progr. in Aerospace Sci., 32, Iss. 1, 1-42 (1996). C. R. Schultheisz and A. M. Waas Compressive failure of composites, Part I: Testing and micromechanical theories //Progr. in Aerospace Sci., 32, Iss. 1, 1-42 (1996).
8.
Zurück zum Zitat T. A. Bogetti, G. W. Gillespie, and Jr and R. Byron Pipes, “Evaluation of the IITRI compression test method for stiffness and strength determination,” Compos. Sci. Technol., 32, 57-76 (1988). T. A. Bogetti, G. W. Gillespie, and Jr and R. Byron Pipes, “Evaluation of the IITRI compression test method for stiffness and strength determination,” Compos. Sci. Technol., 32, 57-76 (1988).
9.
Zurück zum Zitat B. Budiansky and N. A. Fleck, “Compressive failure of fibre composites,” J. Mech. and Phys. Solids, 41, Iss. 1, 183-211 (1993). B. Budiansky and N. A. Fleck, “Compressive failure of fibre composites,” J. Mech. and Phys. Solids, 41, Iss. 1, 183-211 (1993).
10.
Zurück zum Zitat F. J. McGarry and J. E. Moalli, “Mechanical behavior of rigid-rod polymer fibers: 2. Improvement of compressive strength,” Polymer, 32, No. 10, 1816-1820 (1991).CrossRef F. J. McGarry and J. E. Moalli, “Mechanical behavior of rigid-rod polymer fibers: 2. Improvement of compressive strength,” Polymer, 32, No. 10, 1816-1820 (1991).CrossRef
11.
Zurück zum Zitat H. M. Jensen, “Analysis of compressive failure of layered materials by kink band broadening,” Int. J. of Solids and Struct., 36, 3427-3441 (1999).CrossRef H. M. Jensen, “Analysis of compressive failure of layered materials by kink band broadening,” Int. J. of Solids and Struct., 36, 3427-3441 (1999).CrossRef
12.
Zurück zum Zitat I. Chung and Y. Weitsman, “On the buckling/kinking compressive failure of fibrous composites,” Int. J. of Solids and Struct., 32, No. 16, 2329-2344 (1995).CrossRef I. Chung and Y. Weitsman, “On the buckling/kinking compressive failure of fibrous composites,” Int. J. of Solids and Struct., 32, No. 16, 2329-2344 (1995).CrossRef
13.
Zurück zum Zitat J. Lankford, “Compressive failure of fibre-reinforced composites: buckling, kinking, and the role of the interphase,:” J. Mater. Sci., 30, 4343-4348 (1995).CrossRef J. Lankford, “Compressive failure of fibre-reinforced composites: buckling, kinking, and the role of the interphase,:” J. Mater. Sci., 30, 4343-4348 (1995).CrossRef
14.
Zurück zum Zitat J. Hapke, F. Gehrig, N. Huber, K. Schulte, and E. T. Lilleodden, “Compressive failure of UD-CFRP containing void defects: In situ SEM microanalysis,” Compos. Sci. Technol., 71, 1242-1249 (2011).CrossRef J. Hapke, F. Gehrig, N. Huber, K. Schulte, and E. T. Lilleodden, “Compressive failure of UD-CFRP containing void defects: In situ SEM microanalysis,” Compos. Sci. Technol., 71, 1242-1249 (2011).CrossRef
15.
Zurück zum Zitat K. Niu, and R. Talreja, “Modeling of compressive failure in fiber reinforced composites,” Int. J. Solids and Struct., 37, No. 17, 2405-2428 (2000).CrossRef K. Niu, and R. Talreja, “Modeling of compressive failure in fiber reinforced composites,” Int. J. Solids and Struct., 37, No. 17, 2405-2428 (2000).CrossRef
16.
Zurück zum Zitat L. C. Wu, C. Y. Lo, T. Nakamura, and A. Kushner, “Identifying failure mechanisms of composite structures under compressive load,” Int. J. Solids and Struct., 35, No. 12, 1137-1161 (1998).CrossRef L. C. Wu, C. Y. Lo, T. Nakamura, and A. Kushner, “Identifying failure mechanisms of composite structures under compressive load,” Int. J. Solids and Struct., 35, No. 12, 1137-1161 (1998).CrossRef
17.
Zurück zum Zitat M. Miwa, E. Tsushima, and J. Takayasu, “Axial compressive strength of carbon fiber with tensile strength distribution,” J. Appl. Polymer Sci., 43, 1467-1474 (1991).CrossRef M. Miwa, E. Tsushima, and J. Takayasu, “Axial compressive strength of carbon fiber with tensile strength distribution,” J. Appl. Polymer Sci., 43, 1467-1474 (1991).CrossRef
18.
Zurück zum Zitat N. K. Naik and R. S. Kumar, “Compressive strength of unidirectional composites: Evaluation and comparison of prediction models,” Compos. Struct., 46, 299-308 (1999).CrossRef N. K. Naik and R. S. Kumar, “Compressive strength of unidirectional composites: Evaluation and comparison of prediction models,” Compos. Struct., 46, 299-308 (1999).CrossRef
19.
Zurück zum Zitat D. F. Adams and E. M. Odom, “Failure modes of unidirectional carbon/epoxy composite compression specimens,” Composite, 21, No. 4, 289-296 (1990). D. F. Adams and E. M. Odom, “Failure modes of unidirectional carbon/epoxy composite compression specimens,” Composite, 21, No. 4, 289-296 (1990).
20.
Zurück zum Zitat R. A. Schapery, “Prediction of compressive strength and kink bands in composites using a work potential,” Int. J. Solids and Struct., 32, No. 6/7, 739-765 (1995).CrossRef R. A. Schapery, “Prediction of compressive strength and kink bands in composites using a work potential,” Int. J. Solids and Struct., 32, No. 6/7, 739-765 (1995).CrossRef
21.
Zurück zum Zitat R. M. Christensen, “On compressive failure of fibrous composites,” Compos. Eng., 3, No. 12,.1111-1118 (1993). R. M. Christensen, “On compressive failure of fibrous composites,” Compos. Eng., 3, No. 12,.1111-1118 (1993).
22.
Zurück zum Zitat S. Kyriakides, R. Arseculeratne, E. J. Perry, and K. M. Liechti, “On the compressive failure of fiber reinforced composites,” Int. J. of Solids and Struct., 32, No. 6/7, 689-738 (1995).CrossRef S. Kyriakides, R. Arseculeratne, E. J. Perry, and K. M. Liechti, “On the compressive failure of fiber reinforced composites,” Int. J. of Solids and Struct., 32, No. 6/7, 689-738 (1995).CrossRef
23.
Zurück zum Zitat T. V. Parry and A. S. Wronski, “Kinking and compressive failure in uniaxially aligned carbon fibre composite tested under superposed hydrostatic pressure,” J. Mater. Sci., 17, 893-900 (1982).CrossRef T. V. Parry and A. S. Wronski, “Kinking and compressive failure in uniaxially aligned carbon fibre composite tested under superposed hydrostatic pressure,” J. Mater. Sci., 17, 893-900 (1982).CrossRef
24.
Zurück zum Zitat T. V. Parry and A. S. Wronski, “Kinking and tensile, compressive and interlaminar shear failure in carbon-fibre-reinforced plastic beams tested in flexure,” J. Mater. Sci., 16, 439-450 (1981).CrossRef T. V. Parry and A. S. Wronski, “Kinking and tensile, compressive and interlaminar shear failure in carbon-fibre-reinforced plastic beams tested in flexure,” J. Mater. Sci., 16, 439-450 (1981).CrossRef
25.
Zurück zum Zitat T. Ohsawa, M. Miwa, and M. Kawade, “Axial compressive strength of carbon fiber,” J. Appl. Polymer Sci., 39, 1733-1743 (1990).CrossRef T. Ohsawa, M. Miwa, and M. Kawade, “Axial compressive strength of carbon fiber,” J. Appl. Polymer Sci., 39, 1733-1743 (1990).CrossRef
26.
Zurück zum Zitat V. V. Kozey, “Splitting-related kinking failure mode in unidirectional composites under compressive loading,” J. Mater. Sci. Lett., 12, 43-47 (1993). V. V. Kozey, “Splitting-related kinking failure mode in unidirectional composites under compressive loading,” J. Mater. Sci. Lett., 12, 43-47 (1993).
27.
Zurück zum Zitat J. S. Welsh and D. F. Adams, “Testing of angle-ply laminates to obtain unidirectional composite compression strengths,” Composites: Part A, 28A, 387-396 (1997).CrossRef J. S. Welsh and D. F. Adams, “Testing of angle-ply laminates to obtain unidirectional composite compression strengths,” Composites: Part A, 28A, 387-396 (1997).CrossRef
28.
Zurück zum Zitat W. S. Slaughter, J. Fan, and N. A. Fleck, “Dynamic compressive failure of fiber composites,” J. Mech. Phys. Solids, 44, No. 11, 1867-1890 (1996).CrossRef W. S. Slaughter, J. Fan, and N. A. Fleck, “Dynamic compressive failure of fiber composites,” J. Mech. Phys. Solids, 44, No. 11, 1867-1890 (1996).CrossRef
29.
Zurück zum Zitat P. Davidson and A. M. Waas, “Mechanics of kinking in fiber-reinforced composites under compressive loading,” Mathem. Mech. Solids, 21, No. 6, 667-684 (2016).CrossRef P. Davidson and A. M. Waas, “Mechanics of kinking in fiber-reinforced composites under compressive loading,” Mathem. Mech. Solids, 21, No. 6, 667-684 (2016).CrossRef
30.
Zurück zum Zitat P. Prabhakar and A. M. Waas, “Interaction between kinking and splitting it the compressive failure of unidirectional fiber reinforced laminated composites,” Compos. Struct., 98, 85-92 (2013).CrossRef P. Prabhakar and A. M. Waas, “Interaction between kinking and splitting it the compressive failure of unidirectional fiber reinforced laminated composites,” Compos. Struct., 98, 85-92 (2013).CrossRef
31.
Zurück zum Zitat S. Pimenta, R. Gutkin, S. T. Pinho, and P. Robinson, “A micromechanical model for kink-band formation: Part I. Experimental study and numerical modeling,” Compos. Sci. Technol., 69, No. 7-8, 948-955 (2009).CrossRef S. Pimenta, R. Gutkin, S. T. Pinho, and P. Robinson, “A micromechanical model for kink-band formation: Part I. Experimental study and numerical modeling,” Compos. Sci. Technol., 69, No. 7-8, 948-955 (2009).CrossRef
32.
Zurück zum Zitat S. H. Lee, C. S. Yerramalli, and A. M. Waas, “Compressive splitting response of glass reinforced unidirectional composites,” Compos. Sci. Technol., 60, No. 16, 2957-2966 (2000).CrossRef S. H. Lee, C. S. Yerramalli, and A. M. Waas, “Compressive splitting response of glass reinforced unidirectional composites,” Compos. Sci. Technol., 60, No. 16, 2957-2966 (2000).CrossRef
33.
Zurück zum Zitat O. Allix, N. Feld, E. Baranger, J.-M. Guimard., and C. Ha-Minh, “The compressive behavior of composites including fiber kinking: Modelling across the scales,” Meccanica, 49, Iss. 11, 2571-2586 (2014). O. Allix, N. Feld, E. Baranger, J.-M. Guimard., and C. Ha-Minh, “The compressive behavior of composites including fiber kinking: Modelling across the scales,” Meccanica, 49, Iss. 11, 2571-2586 (2014).
34.
Zurück zum Zitat A. N. Polilov, Etudes on Mechanics of Composites [in Russian], M., Fizmatgiz, 2015. A. N. Polilov, Etudes on Mechanics of Composites [in Russian], M., Fizmatgiz, 2015.
35.
Zurück zum Zitat D3410/D3410M-03, Standart Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading, vol. 15.03, Space Simulation; Aerospace and Aircraft; Composite Materials. ASTM Int., West Conshohocken, PA., 2005. D3410/D3410M-03, Standart Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading, vol. 15.03, Space Simulation; Aerospace and Aircraft; Composite Materials. ASTM Int., West Conshohocken, PA., 2005.
36.
Zurück zum Zitat D6641/D6641M-16, Standart Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture, ASTM Int., West Conshohocken, PA, 2016. D6641/D6641M-16, Standart Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture, ASTM Int., West Conshohocken, PA, 2016.
37.
Zurück zum Zitat V. N. Paimushin, “Refined models for an analysis research of internal and external buckling modes of a monolayer in a layered composite,” Mech. Compos. Mater., 53, No. 11, 881-906 (2017). V. N. Paimushin, “Refined models for an analysis research of internal and external buckling modes of a monolayer in a layered composite,” Mech. Compos. Mater., 53, No. 11, 881-906 (2017).
38.
Zurück zum Zitat V. N. Paimushin and V. I. Shalashilin, “The relations of deformation theory in the quadratic approximation and the problems of constructing improved versions of the geometrically non-linear theory of laminated structures,” J. Appl. Mathem. Mech., 69, No. 5, 773-791 (2005).CrossRef V. N. Paimushin and V. I. Shalashilin, “The relations of deformation theory in the quadratic approximation and the problems of constructing improved versions of the geometrically non-linear theory of laminated structures,” J. Appl. Mathem. Mech., 69, No. 5, 773-791 (2005).CrossRef
39.
Zurück zum Zitat V. N. Paimushin, “Problems of geometric non-linearity and stability in the mechanics of thin shells and rectilinear columns,” J. Appl. Mathem. Mech., 71, No. 5, 772-805 (2007).CrossRef V. N. Paimushin, “Problems of geometric non-linearity and stability in the mechanics of thin shells and rectilinear columns,” J. Appl. Mathem. Mech., 71, No. 5, 772-805 (2007).CrossRef
40.
Zurück zum Zitat V. N. Paimushin and N. V. Polyakova, “The consistent equations of the theory of plane curvilinear rods for finite displacements and linearized problems of stability,” J. Appl. Mathem. Mech., 73, No. 2, 220-236 (2009).CrossRef V. N. Paimushin and N. V. Polyakova, “The consistent equations of the theory of plane curvilinear rods for finite displacements and linearized problems of stability,” J. Appl. Mathem. Mech., 73, No. 2, 220-236 (2009).CrossRef
41.
Zurück zum Zitat R. A. Kayumov, S. A. Lukankin, V. N. Paimushin, and S. A. Kholmogorov, “Identification of the mechanical characteristics of fiber-reinforced composites,” Uch. Zap. Kazan Universita, Ser. Fiz.mat. Nauki, 157, No. 4, 112-132 (2015). R. A. Kayumov, S. A. Lukankin, V. N. Paimushin, and S. A. Kholmogorov, “Identification of the mechanical characteristics of fiber-reinforced composites,” Uch. Zap. Kazan Universita, Ser. Fiz.mat. Nauki, 157, No. 4, 112-132 (2015).
42.
Zurück zum Zitat N. A. Alfutov, P. A. Zinovyev, and B. G. Popov, “Calculation of Multilayered Plates and Shells of Composite Materials [in Russian], M., Mashinostroenie, 1984. N. A. Alfutov, P. A. Zinovyev, and B. G. Popov, “Calculation of Multilayered Plates and Shells of Composite Materials [in Russian], M., Mashinostroenie, 1984.
Metadaten
Titel
Mechanics of Unidirectional Fiber-Reinforced Composites: Buckling Modes and Failure Under Compression Along Fibers
verfasst von
V. N. Paimushin
S. A. Kholmogorov
R. K. Gazizullin
Publikationsdatum
11.01.2018
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 6/2018
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-018-9699-7

Weitere Artikel der Ausgabe 6/2018

Mechanics of Composite Materials 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.