Skip to main content

2019 | OriginalPaper | Buchkapitel

Synthetic Fuels

A Contribution of Chemistry to Sustainable Energy Systems

verfasst von : Robert Schlögl

Erschienen in: Zukünftige Kraftstoffe

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As it becomes more urgent to take action in CO2 reduction following the Paris accord it is essential to draw a plan for how a sustainable energy system may look like. This is not a fixed target but rather a plastic picture with, however a few hard contours in it. These contours describe critical elements interacting in the system sustainable energy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Truffer B, Schippl J, Fleischer T (2017) Decentering technology in technology assessment: prospects for socio-technical transitions in electric mobility in Germany. Technol Forecast Soc Chang 122:34–48CrossRef Truffer B, Schippl J, Fleischer T (2017) Decentering technology in technology assessment: prospects for socio-technical transitions in electric mobility in Germany. Technol Forecast Soc Chang 122:34–48CrossRef
2.
Zurück zum Zitat Aresta M (2017) My journey in the CO2-chemistry wonderland. Coord Chem Rev 334:150–183CrossRef Aresta M (2017) My journey in the CO2-chemistry wonderland. Coord Chem Rev 334:150–183CrossRef
3.
Zurück zum Zitat Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6(6):1711–1731CrossRef Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6(6):1711–1731CrossRef
4.
Zurück zum Zitat Pischinger S (2016) Current and future challenges for automotive catalysis: engine technology trends and their impact. Top Catal 59(10–12):834–844CrossRef Pischinger S (2016) Current and future challenges for automotive catalysis: engine technology trends and their impact. Top Catal 59(10–12):834–844CrossRef
5.
Zurück zum Zitat Hoppe F, Heuser B, Thewes M, Kremer F, Pischinger S, Dahmen M, Hechinger M, Marquardt W (2016) Tailor-made fuels for future engine concepts. Int J Engine Res 17(1):16–27CrossRef Hoppe F, Heuser B, Thewes M, Kremer F, Pischinger S, Dahmen M, Hechinger M, Marquardt W (2016) Tailor-made fuels for future engine concepts. Int J Engine Res 17(1):16–27CrossRef
6.
Zurück zum Zitat Maus W, Jacob E (2015) Future-safe combustion-engined drives – the role of sustainable fuels. International Engine Congress, Baden, pp 283–284 Maus W, Jacob E (2015) Future-safe combustion-engined drives – the role of sustainable fuels. International Engine Congress, Baden, pp 283–284
7.
Zurück zum Zitat Hartl M, Seidenspinner P, Jacob E, Wachtmeister G (2015) Oxygenate screening on a heavy-duty diesel engine and emission characteristics of highly oxygenated oxymethylene ether fuel OME1. Fuel 153:328–335CrossRef Hartl M, Seidenspinner P, Jacob E, Wachtmeister G (2015) Oxygenate screening on a heavy-duty diesel engine and emission characteristics of highly oxygenated oxymethylene ether fuel OME1. Fuel 153:328–335CrossRef
8.
Zurück zum Zitat Klankermayer J, Wesselbaum S, Beydoun K, Leitner W (2016) Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry. Angewandte Chemie Int Ed 55(26):7296–7343CrossRef Klankermayer J, Wesselbaum S, Beydoun K, Leitner W (2016) Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry. Angewandte Chemie Int Ed 55(26):7296–7343CrossRef
9.
Zurück zum Zitat Aresta M, Dibenedetto A, Angelini A (2013) The changing paradigm in CO2 utilization. J CO2 Utilization 3–5:65–73CrossRef Aresta M, Dibenedetto A, Angelini A (2013) The changing paradigm in CO2 utilization. J CO2 Utilization 3–5:65–73CrossRef
10.
Zurück zum Zitat Leitner W, Klankermayer J, Pischinger S, Pitsch H, Kohse-Hoinghaus K (2017) Advanced biofuels and beyond: chemistry solutions for propulsion and production. Angewandte Chemie Int Ed 56(20):5412–5452CrossRef Leitner W, Klankermayer J, Pischinger S, Pitsch H, Kohse-Hoinghaus K (2017) Advanced biofuels and beyond: chemistry solutions for propulsion and production. Angewandte Chemie Int Ed 56(20):5412–5452CrossRef
11.
Zurück zum Zitat Poliakoff M, Leitner W, Streng ES (2015) The twelve principles of CO2 chemistry. Faraday Discuss 183:9–17CrossRef Poliakoff M, Leitner W, Streng ES (2015) The twelve principles of CO2 chemistry. Faraday Discuss 183:9–17CrossRef
12.
Zurück zum Zitat Klankermayer J, Leitner W (2015) Love at second sight for CO2 and H-2 in organic synthesis. Science 350(6261):629–630CrossRef Klankermayer J, Leitner W (2015) Love at second sight for CO2 and H-2 in organic synthesis. Science 350(6261):629–630CrossRef
13.
Zurück zum Zitat Aresta M, Dibenedetto A, Quaranta E (2016) State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels: the distinctive contribution of chemical catalysis and biotechnology. J Catal 343:2–45CrossRef Aresta M, Dibenedetto A, Quaranta E (2016) State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels: the distinctive contribution of chemical catalysis and biotechnology. J Catal 343:2–45CrossRef
14.
Zurück zum Zitat Mac Dowell N, Fennell PS, Shah N, Maitland GC (2017) The role of CO2 capture and utilization in mitigating climate change. Nat Clim Change 7(4):243–249CrossRef Mac Dowell N, Fennell PS, Shah N, Maitland GC (2017) The role of CO2 capture and utilization in mitigating climate change. Nat Clim Change 7(4):243–249CrossRef
15.
Zurück zum Zitat Cuellar-Franca RM, Azapagic A (2015) Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J CO2 Utilization 9:82–102CrossRef Cuellar-Franca RM, Azapagic A (2015) Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J CO2 Utilization 9:82–102CrossRef
16.
Zurück zum Zitat Bruhn T, Naims H, Olfe-Krautlein B (2016) Separating the debate on CO2 utilisation from carbon capture and storage. Environ Sci Policy 60:38–43CrossRef Bruhn T, Naims H, Olfe-Krautlein B (2016) Separating the debate on CO2 utilisation from carbon capture and storage. Environ Sci Policy 60:38–43CrossRef
17.
Zurück zum Zitat Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114(3):1709–1742CrossRef Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114(3):1709–1742CrossRef
18.
Zurück zum Zitat Philibert C (2017) Renewable energy for industry. Int Energy Agency, Paris, S 65 Philibert C (2017) Renewable energy for industry. Int Energy Agency, Paris, S 65
19.
Zurück zum Zitat Perez-Fortes M, Schoneberger JC, Boulamanti A, Tzimas E (2016) Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment. Appl Energy 161:718–732CrossRef Perez-Fortes M, Schoneberger JC, Boulamanti A, Tzimas E (2016) Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment. Appl Energy 161:718–732CrossRef
20.
Zurück zum Zitat Haegel NM, Margolis R, Buonassisi T, Feldman D, Froitzheim A, Garabedian R, Green M, Glunz S, Henning HM, Holder B, Kaizuka I, Kroposki B, Matsubara K, Niki S, Sakurai K, Schindler RA, Tumas W, Weber ER, Wilson G, Woodhouse M, Kurtz S (2017) Terawatt-scale photovoltaics: trajectories and challenges. Science 356(6334):141–143CrossRef Haegel NM, Margolis R, Buonassisi T, Feldman D, Froitzheim A, Garabedian R, Green M, Glunz S, Henning HM, Holder B, Kaizuka I, Kroposki B, Matsubara K, Niki S, Sakurai K, Schindler RA, Tumas W, Weber ER, Wilson G, Woodhouse M, Kurtz S (2017) Terawatt-scale photovoltaics: trajectories and challenges. Science 356(6334):141–143CrossRef
21.
Zurück zum Zitat Palzer A, Henning HM (2014) A future German energy system with a dominating contribution from renewable energies: a holistic model based on hourly simulation. Energy Technol 2(1):13–28CrossRef Palzer A, Henning HM (2014) A future German energy system with a dominating contribution from renewable energies: a holistic model based on hourly simulation. Energy Technol 2(1):13–28CrossRef
22.
Zurück zum Zitat Palzer A, Henning HM (2014) A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part II: results. Renew Sustain Energy Rev 30:1019–1034CrossRef Palzer A, Henning HM (2014) A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part II: results. Renew Sustain Energy Rev 30:1019–1034CrossRef
23.
Zurück zum Zitat Henning HM, Palzer A (2014) A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—part I: methodology. Renew Sustain Energy Rev 30:1003–1018CrossRef Henning HM, Palzer A (2014) A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—part I: methodology. Renew Sustain Energy Rev 30:1003–1018CrossRef
24.
Zurück zum Zitat Lunz B, Stöcker P, Eckstein S, Nebel A, Samadi S, Erlach B, Fischedick M, Elsner P, Sauer DU (2016) Appl Energy 171(Suppl C):580 Lunz B, Stöcker P, Eckstein S, Nebel A, Samadi S, Erlach B, Fischedick M, Elsner P, Sauer DU (2016) Appl Energy 171(Suppl C):580
25.
Zurück zum Zitat Archer MD, Bolton JR (1990) Requirements for ideal performance of photochemical and photovoltaic solar-energy converters. J Phys Chem 94(21):8028–8036CrossRef Archer MD, Bolton JR (1990) Requirements for ideal performance of photochemical and photovoltaic solar-energy converters. J Phys Chem 94(21):8028–8036CrossRef
26.
Zurück zum Zitat Yagi M, Syouji A, Yamada S, Komi M, Yamazaki H, Tajima S (2009) Molecular catalysts for water oxidation toward artificial photosynthesis. Photochem Photobiol Sci 8(2):139–147CrossRef Yagi M, Syouji A, Yamada S, Komi M, Yamazaki H, Tajima S (2009) Molecular catalysts for water oxidation toward artificial photosynthesis. Photochem Photobiol Sci 8(2):139–147CrossRef
27.
Zurück zum Zitat Gust D, Moore TA, Moore AL (2009) Solar fuels via artificial photosynthesis. Acc Chem Res 42(12):1890–1898CrossRef Gust D, Moore TA, Moore AL (2009) Solar fuels via artificial photosynthesis. Acc Chem Res 42(12):1890–1898CrossRef
28.
Zurück zum Zitat Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38(1):185–196CrossRef Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38(1):185–196CrossRef
29.
Zurück zum Zitat Suopajarvi H, Pongracz E, Fabritius T (2013) The potential of using biomass-based reducing agents in the blast furnace: a review of thermochemical conversion technologies and assessments related to sustainability. Renew Sustain Energy Rev 25:511–528CrossRef Suopajarvi H, Pongracz E, Fabritius T (2013) The potential of using biomass-based reducing agents in the blast furnace: a review of thermochemical conversion technologies and assessments related to sustainability. Renew Sustain Energy Rev 25:511–528CrossRef
30.
Zurück zum Zitat Steinfeld A (2005) Solar thermochemical production of hydrogen – a review. Sol Energy 78(5):603–615CrossRef Steinfeld A (2005) Solar thermochemical production of hydrogen – a review. Sol Energy 78(5):603–615CrossRef
31.
Zurück zum Zitat Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Gratzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591CrossRef Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Gratzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591CrossRef
32.
Zurück zum Zitat Oregan B, Gratzel M (1991) A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TIO2 films. Nature 353(6346):737–740CrossRef Oregan B, Gratzel M (1991) A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TIO2 films. Nature 353(6346):737–740CrossRef
33.
Zurück zum Zitat Bukhtiyarova M, Lunkenbein T, Kähler K, Schlögl R (2017) Methanol synthesis from industrial CO2 sources: a contribution to chemical energy conversion. Catal Lett 147(2):416–427CrossRef Bukhtiyarova M, Lunkenbein T, Kähler K, Schlögl R (2017) Methanol synthesis from industrial CO2 sources: a contribution to chemical energy conversion. Catal Lett 147(2):416–427CrossRef
34.
Zurück zum Zitat Wang HR, Yan JB, Dong L (2016) Simulation and economic evaluation of biomass gasification with sets for heating, cooling and power production. Renew Energy 99:360–368CrossRef Wang HR, Yan JB, Dong L (2016) Simulation and economic evaluation of biomass gasification with sets for heating, cooling and power production. Renew Energy 99:360–368CrossRef
35.
Zurück zum Zitat Li M, Rao AD, Brouwer J, Samuelsen GS (2010) Design of highly efficient coal-based integrated gasification fuel cell power plants. J Power Sources 195(17):5707–5718CrossRef Li M, Rao AD, Brouwer J, Samuelsen GS (2010) Design of highly efficient coal-based integrated gasification fuel cell power plants. J Power Sources 195(17):5707–5718CrossRef
36.
Zurück zum Zitat Mahbub N, Oyedun AO, Kumar A, Oestreich D, Arnold U, Sauer J (2017) A life cycle assessment of oxymethylene ether synthesis from biomass-derived syngas as a diesel additive. J Clean Prod 165:1249–1262CrossRef Mahbub N, Oyedun AO, Kumar A, Oestreich D, Arnold U, Sauer J (2017) A life cycle assessment of oxymethylene ether synthesis from biomass-derived syngas as a diesel additive. J Clean Prod 165:1249–1262CrossRef
37.
Zurück zum Zitat Mirkouei A, Haapala KR, Sessions J, Murthy GS (2017) A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains. Renew Sustain Energy Rev 67:15–35CrossRef Mirkouei A, Haapala KR, Sessions J, Murthy GS (2017) A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains. Renew Sustain Energy Rev 67:15–35CrossRef
38.
Zurück zum Zitat Rosillo-Calle F (2016) A review of biomass energy-shortcomings and concerns. J Chem Technol Biotechnol 91(7):1933–1945CrossRef Rosillo-Calle F (2016) A review of biomass energy-shortcomings and concerns. J Chem Technol Biotechnol 91(7):1933–1945CrossRef
39.
Zurück zum Zitat Ail SS, Dasappa S (2016) Biomass to liquid transportation fuel via Fischer Tropsch synthesis – technology review and current scenario. Renew Sustain Energy Rev 58:267–286CrossRef Ail SS, Dasappa S (2016) Biomass to liquid transportation fuel via Fischer Tropsch synthesis – technology review and current scenario. Renew Sustain Energy Rev 58:267–286CrossRef
40.
Zurück zum Zitat Reiche S, Kowalew N, Schlögl R (2015) Influence of synthesis pH and oxidative strength of the catalyzing acid on the morphology and chemical structure of hydrothermal carbon. ChemPhysChem 16(3):579–587CrossRef Reiche S, Kowalew N, Schlögl R (2015) Influence of synthesis pH and oxidative strength of the catalyzing acid on the morphology and chemical structure of hydrothermal carbon. ChemPhysChem 16(3):579–587CrossRef
41.
Zurück zum Zitat Paraknowitsch JP, Thomas A, Antonietti M (2009) Carbon colloids prepared by hydrothermal carbonization as efficient fuel for indirect carbon fuel cells. Chem Mater 21(7):1170–1172CrossRef Paraknowitsch JP, Thomas A, Antonietti M (2009) Carbon colloids prepared by hydrothermal carbonization as efficient fuel for indirect carbon fuel cells. Chem Mater 21(7):1170–1172CrossRef
42.
Zurück zum Zitat Deutz S, Bongartz D, Heuser B, Katelhon A, Langenhorst LS, Omari A, Walters M, Klankermayer J, Leitner W, Mitsos A, Pischinger S, Bardow A (2018) Cleaner production of cleaner fuels: wind-to-wheel – environmental assessment of CO2-based oxymethylene ether as a drop-in fuel. Energy Environ Sci 11(2):331–343CrossRef Deutz S, Bongartz D, Heuser B, Katelhon A, Langenhorst LS, Omari A, Walters M, Klankermayer J, Leitner W, Mitsos A, Pischinger S, Bardow A (2018) Cleaner production of cleaner fuels: wind-to-wheel – environmental assessment of CO2-based oxymethylene ether as a drop-in fuel. Energy Environ Sci 11(2):331–343CrossRef
43.
Zurück zum Zitat Schmidt P, Raksha T, Jöhrens J, Lambrecht U, Gerhardt N, Jentsch M (2016) Analyse von Herausforderungen und Synergiepotenzialen beim Zusammenspiel von Verkehrs- und Stromsektor. BMVI Ed Schmidt P, Raksha T, Jöhrens J, Lambrecht U, Gerhardt N, Jentsch M (2016) Analyse von Herausforderungen und Synergiepotenzialen beim Zusammenspiel von Verkehrs- und Stromsektor. BMVI Ed
44.
Zurück zum Zitat Deutsch D, Oestreich D, Lautenschutz L, Haltenort P, Arnold U, Sauer J (2017) High purity oligomeric oxymethylene ethers as diesel fuels. Chem Ing Tec 89(4):486–489CrossRef Deutsch D, Oestreich D, Lautenschutz L, Haltenort P, Arnold U, Sauer J (2017) High purity oligomeric oxymethylene ethers as diesel fuels. Chem Ing Tec 89(4):486–489CrossRef
45.
Zurück zum Zitat Oestreich D, Lautenschutz L, Arnold U, Sauer J (2017) Reaction kinetics and equilibrium parameters for the production of oxymethylene dimethyl ethers (OME) from methanol and formaldehyde. Chem Eng Sci 163:92–104CrossRef Oestreich D, Lautenschutz L, Arnold U, Sauer J (2017) Reaction kinetics and equilibrium parameters for the production of oxymethylene dimethyl ethers (OME) from methanol and formaldehyde. Chem Eng Sci 163:92–104CrossRef
46.
Zurück zum Zitat Lautenschutz L, Oestreich D, Haltenort P, Arnold U, Dinjus E, Sauer J (2017) Efficient synthesis of oxymethylene dimethyl ethers (OME) from dimethoxymethane and trioxane over zeolites. Fuel Process Technol 165:27–33CrossRef Lautenschutz L, Oestreich D, Haltenort P, Arnold U, Dinjus E, Sauer J (2017) Efficient synthesis of oxymethylene dimethyl ethers (OME) from dimethoxymethane and trioxane over zeolites. Fuel Process Technol 165:27–33CrossRef
47.
Zurück zum Zitat Schmitz N, Burger J, Strofer E, Hasse H (2016) From methanol to the oxygenated diesel fuel poly(oxymethylene) dimethyl ether: an assessment of the production costs. Fuel 185:67–72CrossRef Schmitz N, Burger J, Strofer E, Hasse H (2016) From methanol to the oxygenated diesel fuel poly(oxymethylene) dimethyl ether: an assessment of the production costs. Fuel 185:67–72CrossRef
48.
Zurück zum Zitat Icha P (2013) Climate change. Umweltbundesamt Ed Icha P (2013) Climate change. Umweltbundesamt Ed
49.
Zurück zum Zitat Rockstrom J, Gaffney O, Rogelj J, Meinshausen M, Nakicenovic N, Schellnhuber HJ (2017) Climate policy a roadmap for rapid decarbonization. Science 355(6331):1269–1271CrossRef Rockstrom J, Gaffney O, Rogelj J, Meinshausen M, Nakicenovic N, Schellnhuber HJ (2017) Climate policy a roadmap for rapid decarbonization. Science 355(6331):1269–1271CrossRef
50.
Zurück zum Zitat Xu XY, Liu Y, Zhang F, Di W, Zhang YL (2017) Clean coal technologies in China based on methanol platform. Catal Today 298:61–68CrossRef Xu XY, Liu Y, Zhang F, Di W, Zhang YL (2017) Clean coal technologies in China based on methanol platform. Catal Today 298:61–68CrossRef
51.
Zurück zum Zitat Ishimoto Y, Kurosawa A, Sasakura M, Sakata K (2017) Significance of CO2-free hydrogen globally and for Japan using a long-term global energy system analysis. Int J Hydrogen Energy 42(19):13357–13367CrossRef Ishimoto Y, Kurosawa A, Sasakura M, Sakata K (2017) Significance of CO2-free hydrogen globally and for Japan using a long-term global energy system analysis. Int J Hydrogen Energy 42(19):13357–13367CrossRef
52.
Zurück zum Zitat Schüth F, Palkovits R, Schlögl R, Su DS (2012) Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition. Energy Environ Sci 5(4):6278–6289CrossRef Schüth F, Palkovits R, Schlögl R, Su DS (2012) Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition. Energy Environ Sci 5(4):6278–6289CrossRef
53.
Zurück zum Zitat Dana AG, Elishav O, Bardow A, Shter GE, Grader GS (2016) Nitrogen-based fuels: a power-to-fuel-to-power analysis. Angewandte Chemie Int Ed 55(31):8798–8805CrossRef Dana AG, Elishav O, Bardow A, Shter GE, Grader GS (2016) Nitrogen-based fuels: a power-to-fuel-to-power analysis. Angewandte Chemie Int Ed 55(31):8798–8805CrossRef
54.
Zurück zum Zitat Koytsoumpa EI, Bergins C, Kakaras E (2018) The CO2 economy: review of CO2 capture and reuse technologies. J Supercrit Fluids 132:3–16CrossRef Koytsoumpa EI, Bergins C, Kakaras E (2018) The CO2 economy: review of CO2 capture and reuse technologies. J Supercrit Fluids 132:3–16CrossRef
55.
Zurück zum Zitat Abanades JC, Rubin ES, Mazzotti M, Herzog HJ (2017) On the climate change mitigation potential of CO2 conversion to fuels. Energy Environ Sci 10(12):2491–2499CrossRef Abanades JC, Rubin ES, Mazzotti M, Herzog HJ (2017) On the climate change mitigation potential of CO2 conversion to fuels. Energy Environ Sci 10(12):2491–2499CrossRef
56.
Zurück zum Zitat Barro C, Parravicini M, Boulouchos K, Liati A (2018) Neat polyoxymethylene dimethyl ether in a diesel engine; part 2: exhaust emission analysis. Fuel 234:1414–1421CrossRef Barro C, Parravicini M, Boulouchos K, Liati A (2018) Neat polyoxymethylene dimethyl ether in a diesel engine; part 2: exhaust emission analysis. Fuel 234:1414–1421CrossRef
57.
Zurück zum Zitat Baranowski CJ, Bahmanpour AM, Krocher O (2017) Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): a review. Appl Catal B-Environ 217:407–420CrossRef Baranowski CJ, Bahmanpour AM, Krocher O (2017) Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): a review. Appl Catal B-Environ 217:407–420CrossRef
58.
Zurück zum Zitat Sinigaglia T, Lewiski F, Martins MES, Siluk JCM (2017) Production, storage, fuel stations of hydrogen and its utilization in automotive applications-a review. Int J Hydrogen Energy 42(39):24597–24611CrossRef Sinigaglia T, Lewiski F, Martins MES, Siluk JCM (2017) Production, storage, fuel stations of hydrogen and its utilization in automotive applications-a review. Int J Hydrogen Energy 42(39):24597–24611CrossRef
59.
Zurück zum Zitat Valente A, Iribarren D, Dufour J (2017) Life cycle assessment of hydrogen energy systems: a review of methodological choices. Int J Life Cycle Assess 22(3):346–363CrossRef Valente A, Iribarren D, Dufour J (2017) Life cycle assessment of hydrogen energy systems: a review of methodological choices. Int J Life Cycle Assess 22(3):346–363CrossRef
60.
Zurück zum Zitat Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen production processes. Renew Sustain Energy Rev 67:597–611CrossRef Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen production processes. Renew Sustain Energy Rev 67:597–611CrossRef
61.
Zurück zum Zitat Spanos I, Auer AA, Neugebauer S, Deng XH, Tuysuz H, Schlogl R (2017) Standardized benchmarking of water splitting catalysts in a Combined Electrochemical Flow Cell/Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) setup. ACS Catalysis 7(6):3768–3778CrossRef Spanos I, Auer AA, Neugebauer S, Deng XH, Tuysuz H, Schlogl R (2017) Standardized benchmarking of water splitting catalysts in a Combined Electrochemical Flow Cell/Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) setup. ACS Catalysis 7(6):3768–3778CrossRef
62.
Zurück zum Zitat Bloor LG, Molina PI, Symes MD, Cronin L (2014) Low pH electrolytic water splitting using earth-abundant metastable catalysts that self-assemble in situ. J Am Chem Soc 136(8):3304–3311CrossRef Bloor LG, Molina PI, Symes MD, Cronin L (2014) Low pH electrolytic water splitting using earth-abundant metastable catalysts that self-assemble in situ. J Am Chem Soc 136(8):3304–3311CrossRef
63.
Zurück zum Zitat McKone J, Lewis N (2013) Structured materials for photoelectrochemical water splitting. In: Lewerenz HJ, Peter L (eds) Photoelectrochemical water splitting: materials, processes and architectures, pp 52–82 McKone J, Lewis N (2013) Structured materials for photoelectrochemical water splitting. In: Lewerenz HJ, Peter L (eds) Photoelectrochemical water splitting: materials, processes and architectures, pp 52–82
64.
Zurück zum Zitat Mette K, Bergmann A, Tessonnier J-P, Hävecker M, Yao L, Ressler T, Schloegl R, Strasser P, Behrens M (2012) Nanostructured manganese oxide supported on carbon nanotubes for electrocatalytic water splitting. Chemcatchem 4(6):851–862CrossRef Mette K, Bergmann A, Tessonnier J-P, Hävecker M, Yao L, Ressler T, Schloegl R, Strasser P, Behrens M (2012) Nanostructured manganese oxide supported on carbon nanotubes for electrocatalytic water splitting. Chemcatchem 4(6):851–862CrossRef
65.
Zurück zum Zitat Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K (2005) GaN: ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J Am Chem Soc 127(23):8286–8287CrossRef Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K (2005) GaN: ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J Am Chem Soc 127(23):8286–8287CrossRef
66.
Zurück zum Zitat Liu HR, Xu SY, Zhou GL, Huang GC, Huang SY, Xiong K (2018) CO2 hydrogenation to methane over Co/KIT-6 catalyst: effect of reduction temperature. Chem Eng J 351:65–73CrossRef Liu HR, Xu SY, Zhou GL, Huang GC, Huang SY, Xiong K (2018) CO2 hydrogenation to methane over Co/KIT-6 catalyst: effect of reduction temperature. Chem Eng J 351:65–73CrossRef
67.
Zurück zum Zitat Leonzio G (2018) State of art and perspectives about the production of methanol, dimethyl ether and syngas by carbon dioxide hydrogenation. J CO2 Utilization 27:326–354CrossRef Leonzio G (2018) State of art and perspectives about the production of methanol, dimethyl ether and syngas by carbon dioxide hydrogenation. J CO2 Utilization 27:326–354CrossRef
68.
Zurück zum Zitat Hoppe F, Burke U, Thewes M, Heufer A, Kremer F, Pischinger S (2016) Tailor-made fuels from biomass: potentials of 2-butanone and 2-methylfuran in direct injection spark ignition engines. Fuel 167:106–117CrossRef Hoppe F, Burke U, Thewes M, Heufer A, Kremer F, Pischinger S (2016) Tailor-made fuels from biomass: potentials of 2-butanone and 2-methylfuran in direct injection spark ignition engines. Fuel 167:106–117CrossRef
69.
Zurück zum Zitat Kerschgens B, Cai LM, Pitsch H, Janssen A, Jakob M, Pischinger S (2015) Surrogate fuels for the simulation of diesel engine combustion of novel biofuels. Int J Engine Res 16(4):531–546CrossRef Kerschgens B, Cai LM, Pitsch H, Janssen A, Jakob M, Pischinger S (2015) Surrogate fuels for the simulation of diesel engine combustion of novel biofuels. Int J Engine Res 16(4):531–546CrossRef
70.
Zurück zum Zitat Niemantsverdriet H, van Helden P, Hensen E, Lennon D, Holt K, Hutchings G, Bowker M, Catlow R, Shozi M, Jewell L, Claeys M, Hayward J, Coville N, Fischer N, Roldan A, Redekop E, Gambu T, Deeplal L, Mkhwanazi TPO, Weststrate KJ, Bahnemann D, Neurock M, Schulz H, Ma D, Kondrat S, Collier P, Gupta AK, Corma A, Akomeah P, Iglesia E, van Steen E, de Leeuw N, Wolf M, van Heerden T (2017) Catalysis for fuels: general discussion. Faraday Discuss 197:165–205CrossRef Niemantsverdriet H, van Helden P, Hensen E, Lennon D, Holt K, Hutchings G, Bowker M, Catlow R, Shozi M, Jewell L, Claeys M, Hayward J, Coville N, Fischer N, Roldan A, Redekop E, Gambu T, Deeplal L, Mkhwanazi TPO, Weststrate KJ, Bahnemann D, Neurock M, Schulz H, Ma D, Kondrat S, Collier P, Gupta AK, Corma A, Akomeah P, Iglesia E, van Steen E, de Leeuw N, Wolf M, van Heerden T (2017) Catalysis for fuels: general discussion. Faraday Discuss 197:165–205CrossRef
71.
Zurück zum Zitat Li H-J, Lausche AC, Peterson AA, Hansen HA, Studt F, Bligaard T (2015) Using microkinetic analysis to search for novel anhydrous formaldehyde production catalysts. Surf Sci 641:105–111CrossRef Li H-J, Lausche AC, Peterson AA, Hansen HA, Studt F, Bligaard T (2015) Using microkinetic analysis to search for novel anhydrous formaldehyde production catalysts. Surf Sci 641:105–111CrossRef
72.
Zurück zum Zitat Häggblad R, Wagner JB, Hansen S, Andersson A (2008) Oxidation of methanol to formaldehyde over a series of Fe1-xAlx-V-oxide catalysts. J Catal 258(2):345–355CrossRef Häggblad R, Wagner JB, Hansen S, Andersson A (2008) Oxidation of methanol to formaldehyde over a series of Fe1-xAlx-V-oxide catalysts. J Catal 258(2):345–355CrossRef
73.
Zurück zum Zitat Nagy A, Mestl G, Rühle T, Weinberg G, Schlögl R (1998) The dynamic behaviour of electrolytic silver during the formaldehyde synthesis reaction. J Catal 179(2):548–559CrossRef Nagy A, Mestl G, Rühle T, Weinberg G, Schlögl R (1998) The dynamic behaviour of electrolytic silver during the formaldehyde synthesis reaction. J Catal 179(2):548–559CrossRef
74.
Zurück zum Zitat Sarathy SM, Osswald P, Hansen N, Kohse-Hoinghaus K (2014) Alcohol combustion chemistry. Prog Energy Combust Sci 44:40–102CrossRef Sarathy SM, Osswald P, Hansen N, Kohse-Hoinghaus K (2014) Alcohol combustion chemistry. Prog Energy Combust Sci 44:40–102CrossRef
75.
Zurück zum Zitat Omari A, Heuser B, Pischinger S (2017) Potential of oxymethylenether-diesel blends for ultra-low emission engines. Fuel 209:232–237CrossRef Omari A, Heuser B, Pischinger S (2017) Potential of oxymethylenether-diesel blends for ultra-low emission engines. Fuel 209:232–237CrossRef
76.
Zurück zum Zitat Peter A, Fehr SM, Dybbert V, Himmel D, Lindner I, Jacob E, Ouda M, Schaadt A, White RJ, Scherer H, Krossing I (2018) Towards a sustainable synthesis of oxymethylene dimethyl ether by homogeneous catalysis and uptake of molecular formaldehyde. Angewandte Chemie Int Ed 57(30):9461–9464CrossRef Peter A, Fehr SM, Dybbert V, Himmel D, Lindner I, Jacob E, Ouda M, Schaadt A, White RJ, Scherer H, Krossing I (2018) Towards a sustainable synthesis of oxymethylene dimethyl ether by homogeneous catalysis and uptake of molecular formaldehyde. Angewandte Chemie Int Ed 57(30):9461–9464CrossRef
77.
Zurück zum Zitat Haltenort P, Hackbarth K, Oestreich D, Lautenschutz L, Arnold U, Sauer J (2018) Heterogeneously catalyzed synthesis of oxymethylene dimethyl ethers (OME) from dimethyl ether and trioxane. Catal Commun 109:80–84CrossRef Haltenort P, Hackbarth K, Oestreich D, Lautenschutz L, Arnold U, Sauer J (2018) Heterogeneously catalyzed synthesis of oxymethylene dimethyl ethers (OME) from dimethyl ether and trioxane. Catal Commun 109:80–84CrossRef
78.
Zurück zum Zitat Grunert A, Losch P, Ochoa-Hernandez C, Schmidt W, Schuth F (2018) Gas-phase synthesis of oxymethylene ethers over Si-rich zeolites. Green Chem 20(20):4719–4728CrossRef Grunert A, Losch P, Ochoa-Hernandez C, Schmidt W, Schuth F (2018) Gas-phase synthesis of oxymethylene ethers over Si-rich zeolites. Green Chem 20(20):4719–4728CrossRef
79.
Zurück zum Zitat Breitkreuz CF, Schmitz N, Strofer E, Burger J, Hasse H (2018) Design of a production process for poly(oxymethylene) dimethyl ethers from dimethyl ether and trioxane. Chem Ing Tec 90(10):1489–1496CrossRef Breitkreuz CF, Schmitz N, Strofer E, Burger J, Hasse H (2018) Design of a production process for poly(oxymethylene) dimethyl ethers from dimethyl ether and trioxane. Chem Ing Tec 90(10):1489–1496CrossRef
80.
Zurück zum Zitat Schittkowski J, Ruland H, Laudenschleger D, Girod K, Kähler K, Kaluza S, Muhler M, Schlögl R (2018) Methanol synthesis from steel mill exhaust gases: challenges for the industrial Cu/ZnO/Al2O3 catalyst. Chem Ing Tec 90(10):1419–1429CrossRef Schittkowski J, Ruland H, Laudenschleger D, Girod K, Kähler K, Kaluza S, Muhler M, Schlögl R (2018) Methanol synthesis from steel mill exhaust gases: challenges for the industrial Cu/ZnO/Al2O3 catalyst. Chem Ing Tec 90(10):1419–1429CrossRef
81.
Zurück zum Zitat Zurbel A, Kraft M, Kavurucu-Schubert S, Bertau M (2018) Methanol synthesis by CO2 Hydrogenation over Cu/ZnO/Al2O3 catalysts under fluctuating conditions. Chem Ing Tec 90(5):721–724CrossRef Zurbel A, Kraft M, Kavurucu-Schubert S, Bertau M (2018) Methanol synthesis by CO2 Hydrogenation over Cu/ZnO/Al2O3 catalysts under fluctuating conditions. Chem Ing Tec 90(5):721–724CrossRef
82.
Zurück zum Zitat Zhao Y, Noori M, Tatari O (2017) Boosting the adoption and the reliability of renewable energy sources: mitigating the large-scale wind power intermittency through vehicle to grid technology. Energy 120:608–618CrossRef Zhao Y, Noori M, Tatari O (2017) Boosting the adoption and the reliability of renewable energy sources: mitigating the large-scale wind power intermittency through vehicle to grid technology. Energy 120:608–618CrossRef
83.
Zurück zum Zitat Modi A, Buhler F, Andreasen JG, Haglind F (2017) A review of solar energy based heat and power generation systems. Renew Sustain Energy Rev 67:1047–1064CrossRef Modi A, Buhler F, Andreasen JG, Haglind F (2017) A review of solar energy based heat and power generation systems. Renew Sustain Energy Rev 67:1047–1064CrossRef
84.
Zurück zum Zitat Koytsoumpa EI, Bergins C, Buddenberg T, Wu S, Sigurbjornsson O, Tran KC, Kakaras E (2016) The challenge of energy storage in Europe: focus on power to fuel. J Energy Resour Technol Trans ASME 138(4):042002CrossRef Koytsoumpa EI, Bergins C, Buddenberg T, Wu S, Sigurbjornsson O, Tran KC, Kakaras E (2016) The challenge of energy storage in Europe: focus on power to fuel. J Energy Resour Technol Trans ASME 138(4):042002CrossRef
85.
Zurück zum Zitat Khan N, Saleem Z, Wahid A (2008) Review of natural energy sources and global power needs. Renew Sustain Energy Rev 12(7):1959–1973CrossRef Khan N, Saleem Z, Wahid A (2008) Review of natural energy sources and global power needs. Renew Sustain Energy Rev 12(7):1959–1973CrossRef
86.
Zurück zum Zitat Perathoner S, Gross S, Hensen EJM, Wessel H, Chraye H, Centi G (2017) Looking at the future of chemical production through the European Roadmap on science and technology of catalysis the EU effort for a long-term vision. Chemcatchem 9(6):904–909CrossRef Perathoner S, Gross S, Hensen EJM, Wessel H, Chraye H, Centi G (2017) Looking at the future of chemical production through the European Roadmap on science and technology of catalysis the EU effort for a long-term vision. Chemcatchem 9(6):904–909CrossRef
87.
Zurück zum Zitat Navarrete A, Centi G, Bogaerts A, Martin A, York A, Stefanidis GD (2017) Harvesting renewable energy for carbon dioxide catalysis. Energy Technol 5(6):796–811CrossRef Navarrete A, Centi G, Bogaerts A, Martin A, York A, Stefanidis GD (2017) Harvesting renewable energy for carbon dioxide catalysis. Energy Technol 5(6):796–811CrossRef
Metadaten
Titel
Synthetic Fuels
verfasst von
Robert Schlögl
Copyright-Jahr
2019
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-58006-6_11

    Premium Partner