Skip to main content
Top
Published in: Microsystem Technologies 3/2018

04-09-2017 | Technical Paper

Direct bonding of polymer/glass-based microfluidic chips with dry film photoresist

Authors: Yiqiang Fan, Shicheng Liu, Yajun Zhang

Published in: Microsystem Technologies | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Dry film has been widely used as a low-cost photoresist in the print circuit board industry which consists of a thin layer of photoresist sandwiched between two protective polymer layers. In this research, a simple, cleanroom-free, low-cost and highly adaptable bonding method for various polymer and glass-based microfluidic systems was proposed using the cross-linked dry film photoresist. In this proposed approach, the uncross-linked dry film photoresist was sandwiched between substrates and cover plate, then using UV exposure for the crosslinking of the photoresist to reach a secured bonding, after bonding, a cleaning process for the removal of photoresist residuals trapped inside the microchannels was also applied. The proposed bonding method is highly adaptable for different kinds of polymer or glass-based microfluidic devices, even the hybrid bonding between polymer and glass substrates could be achieved, which is usually very challenging using the conventional bonding technologies. Comparing with the traditional adhesive bonding method, the proposed method is simple, low-cost and without the requirement for toxic organic solvents, in addition, the cleaning procedure proposed in this study could effectively remove the residual of the adhesives trapped in the microchannels.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bhattacharjee N, Urrios A, Kang S, Folch A (2016) The upcoming 3D-printing revolution in microfluidics. Lab Chip 16:1720CrossRef Bhattacharjee N, Urrios A, Kang S, Folch A (2016) The upcoming 3D-printing revolution in microfluidics. Lab Chip 16:1720CrossRef
go back to reference Cai J, Jiang J, Gao F, Jia G, Zhuang J, Tang G, Fan Y (2017) Rapid prototyping of cyclic olefin copolymer based microfluidic system with CO2 laser ablation. Microsyst Technol 1–7. doi:10.1007/s00542-017-3282-3 Cai J, Jiang J, Gao F, Jia G, Zhuang J, Tang G, Fan Y (2017) Rapid prototyping of cyclic olefin copolymer based microfluidic system with CO2 laser ablation. Microsyst Technol 1–7. doi:10.​1007/​s00542-017-3282-3
go back to reference Chen L, Yin Z, Zou H et al (2017) A thermal bonding method based on O2 plasma and water treatment for fabrication of PET planar nanofluidic device. Microsyst Technol 23:1327CrossRef Chen L, Yin Z, Zou H et al (2017) A thermal bonding method based on O2 plasma and water treatment for fabrication of PET planar nanofluidic device. Microsyst Technol 23:1327CrossRef
go back to reference Deng W (2015) Fusion bonding recipes for glass-glass nanofluidic devices. Denman Undergraduate Research Forum Deng W (2015) Fusion bonding recipes for glass-glass nanofluidic devices. Denman Undergraduate Research Forum
go back to reference Díaz-González M, Baldi A, Chem A (2012) Fabrication of biofunctionalized microfluidic structures by low-temperature wax bonding. Anal Chem 84:7838–7844CrossRef Díaz-González M, Baldi A, Chem A (2012) Fabrication of biofunctionalized microfluidic structures by low-temperature wax bonding. Anal Chem 84:7838–7844CrossRef
go back to reference Ghobeity A, Crabtree HJ, Papini M, Spelt JK (2012) Characterisation and comparison of microfluidic chips formed using abrasive jet micromachining and wet etching. J Micromech Microeng 22:025014CrossRef Ghobeity A, Crabtree HJ, Papini M, Spelt JK (2012) Characterisation and comparison of microfluidic chips formed using abrasive jet micromachining and wet etching. J Micromech Microeng 22:025014CrossRef
go back to reference Greener J, Li W, Ren J, Voicu D, Pakharenko V, Tang T, Kumacheva E (2010) Rapid, cost-efficient fabrication of microfluidic reactors in thermoplastic polymers by combining photolithography and hot embossing. Lab Chip 10:522–524CrossRef Greener J, Li W, Ren J, Voicu D, Pakharenko V, Tang T, Kumacheva E (2010) Rapid, cost-efficient fabrication of microfluidic reactors in thermoplastic polymers by combining photolithography and hot embossing. Lab Chip 10:522–524CrossRef
go back to reference Lin T-Y et al (2017) 3D printed metal molds for hot embossing plastic microfluidic devices. Lab chip 17(2):241–247CrossRef Lin T-Y et al (2017) 3D printed metal molds for hot embossing plastic microfluidic devices. Lab chip 17(2):241–247CrossRef
go back to reference Liu J, Shang J, Tang J, Huang QA (2011) Micromachining of Pyrex 7740 glass by silicon molding and vacuum anodic bonding. Microelectromech Syst J 20:909–915CrossRef Liu J, Shang J, Tang J, Huang QA (2011) Micromachining of Pyrex 7740 glass by silicon molding and vacuum anodic bonding. Microelectromech Syst J 20:909–915CrossRef
go back to reference Liu K et al (2017) PMMA microfluidic chip fabrication using laser ablation and low temperature bonding with OCA film and LOCA. Microsyst Technol 23(6):1937–1942CrossRef Liu K et al (2017) PMMA microfluidic chip fabrication using laser ablation and low temperature bonding with OCA film and LOCA. Microsyst Technol 23(6):1937–1942CrossRef
go back to reference Pan YJ, Yang RJ (2006) A glass microfluidic chip adhesive bonding method at room temperature. J Micromech Microeng 16:2666–2672CrossRef Pan YJ, Yang RJ (2006) A glass microfluidic chip adhesive bonding method at room temperature. J Micromech Microeng 16:2666–2672CrossRef
go back to reference Queste S, Salut R, Clatot S, Rauch JY, Khan Malek CG (2010) Manufacture of microfluidic glass chips by deep plasma etching, femtosecond laser ablation, and anodic bonding. Microsyst Technol 16:1485–1493CrossRef Queste S, Salut R, Clatot S, Rauch JY, Khan Malek CG (2010) Manufacture of microfluidic glass chips by deep plasma etching, femtosecond laser ablation, and anodic bonding. Microsyst Technol 16:1485–1493CrossRef
go back to reference Samel, Chowdhury MK, Stemme (2007) The fabrication of microfluidic structures by means of full-wafer adhesive bonding using a poly(dimethylsiloxane) catalyst. J Micromech Microeng 17:1710CrossRef Samel, Chowdhury MK, Stemme (2007) The fabrication of microfluidic structures by means of full-wafer adhesive bonding using a poly(dimethylsiloxane) catalyst. J Micromech Microeng 17:1710CrossRef
go back to reference Stephan K, Pittet P, Renaud L, Kleimann P, Morin P, Ouaini N, Ferrigno R (2007) Fast prototyping using a dry film photoresist: microfabrication of soft-lithography masters for microfluidic structures. J Micromech Microeng 17:N69–N74. doi:10.1088/0960-1317/17/10/n01 CrossRef Stephan K, Pittet P, Renaud L, Kleimann P, Morin P, Ouaini N, Ferrigno R (2007) Fast prototyping using a dry film photoresist: microfabrication of soft-lithography masters for microfluidic structures. J Micromech Microeng 17:N69–N74. doi:10.​1088/​0960-1317/​17/​10/​n01 CrossRef
go back to reference Sticker D, Rothbauer M, Lechner S, Hehenberger MT, Ertl P (2015) Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol-ene epoxy thermoset for organ-on-a-chip applications. Lab Chip 15:4542CrossRef Sticker D, Rothbauer M, Lechner S, Hehenberger MT, Ertl P (2015) Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol-ene epoxy thermoset for organ-on-a-chip applications. Lab Chip 15:4542CrossRef
go back to reference Swierkowski SP, Davidson JC, Balch JW (2000) Vacuum fusion bonding of glass plates. US Patent 6,131,410, 17 Oct 2000 Swierkowski SP, Davidson JC, Balch JW (2000) Vacuum fusion bonding of glass plates. US Patent 6,131,410, 17 Oct 2000
go back to reference Toossi A et al (2015) Bonding PMMA microfluidics using commercial microwave ovens. J Micromech Microeng 25(8):085008CrossRef Toossi A et al (2015) Bonding PMMA microfluidics using commercial microwave ovens. J Micromech Microeng 25(8):085008CrossRef
go back to reference Tsao CW, Hromada L, Liu J, Kumar P, Devoe DL (2007) Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 7:499CrossRef Tsao CW, Hromada L, Liu J, Kumar P, Devoe DL (2007) Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 7:499CrossRef
go back to reference Wan AM, Sadri A, Young EW (2015) Liquid phase solvent bonding of plastic microfluidic devices assisted by retention grooves. Lab Chip 15:3785CrossRef Wan AM, Sadri A, Young EW (2015) Liquid phase solvent bonding of plastic microfluidic devices assisted by retention grooves. Lab Chip 15:3785CrossRef
go back to reference Yazdi AA, Popma A, Wong W, Nguyen T, Pan Y, Xu J (2016) 3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluid Nanofluid 20:50CrossRef Yazdi AA, Popma A, Wong W, Nguyen T, Pan Y, Xu J (2016) 3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluid Nanofluid 20:50CrossRef
go back to reference Yu L, Shi ZZ (2015) Microfluidic paper-based analytical devices fabricated by low-cost photolithography and embossing of Parafilm®. Lab Chip 15:1642–1645CrossRef Yu L, Shi ZZ (2015) Microfluidic paper-based analytical devices fabricated by low-cost photolithography and embossing of Parafilm®. Lab Chip 15:1642–1645CrossRef
go back to reference Yu H, Chong ZZ, Tor SB, Liu E, Loh NH (2015) Low temperature and deformation-free bonding of PMMA microfluidic devices with stable hydrophilicity via oxygen plasma treatment and PVA coating. RSC Adv 5:8377–8388CrossRef Yu H, Chong ZZ, Tor SB, Liu E, Loh NH (2015) Low temperature and deformation-free bonding of PMMA microfluidic devices with stable hydrophilicity via oxygen plasma treatment and PVA coating. RSC Adv 5:8377–8388CrossRef
go back to reference Zhang M, Wu J, Wang L, Xiao K, Wen W (2010) A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips. Lab Chip 10:1199–1203CrossRef Zhang M, Wu J, Wang L, Xiao K, Wen W (2010) A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips. Lab Chip 10:1199–1203CrossRef
go back to reference Zhang L, Wang W, Ju XJ, Xie R, Liu Z, Chu LY (2014) Fabrication of glass-based microfluidic devices with dry film photoresists as pattern transfer masks for wet etching. RSC Adv 5:5638–5646CrossRef Zhang L, Wang W, Ju XJ, Xie R, Liu Z, Chu LY (2014) Fabrication of glass-based microfluidic devices with dry film photoresists as pattern transfer masks for wet etching. RSC Adv 5:5638–5646CrossRef
go back to reference Zhao S, Cong H, Pan T (2009) Direct projection on dry-film photoresist (DP(2)): do-it-yourself three-dimensional polymer microfluidics. Lab Chip 9:1128–1132. doi:10.1039/b817925e CrossRef Zhao S, Cong H, Pan T (2009) Direct projection on dry-film photoresist (DP(2)): do-it-yourself three-dimensional polymer microfluidics. Lab Chip 9:1128–1132. doi:10.​1039/​b817925e CrossRef
Metadata
Title
Direct bonding of polymer/glass-based microfluidic chips with dry film photoresist
Authors
Yiqiang Fan
Shicheng Liu
Yajun Zhang
Publication date
04-09-2017
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 3/2018
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-017-3541-3

Other articles of this Issue 3/2018

Microsystem Technologies 3/2018 Go to the issue