Skip to main content
Erschienen in: Microsystem Technologies 6/2017

02.04.2016 | Technical Paper

PMMA microfluidic chip fabrication using laser ablation and low temperature bonding with OCA film and LOCA

verfasst von: Kan Liu, Jianzhen Xiang, Zhao Ai, Shoukun Zhang, Yi Fang, Ting Chen, Qiongwei Zhou, Songzhan Li, Shengxiang Wang, Nangang Zhang

Erschienen in: Microsystem Technologies | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new PMMA microfluidic chip fabrication method by combining laser ablation technology with low-temperature bonding using optically clear adhesive (OCA) film and liquid optically clear adhesive (LOCA) was presented in this paper. The deformation and clogging issues of the microfluidic channel were well solved. The effective bonding area ratio of microfluidic chips could be greatly improved by adjusting bonding temperature and bonding time. The crevices around the microchannels were effectively eliminated by coating treatment of LOCA. The bonding strength and waterproof of PMMA microfluidic chips coating with/without LOCA were also evaluated in this paper.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Chen YT, Naessens K, Baets R, Liao YS, Tseng AA (2005) Ablation of Transparent Materials Using Excimer Lasers for Photonic Applications. Opt Rev 6:427–441. doi:10.1007/s10043-005-0427-x Chen YT, Naessens K, Baets R, Liao YS, Tseng AA (2005) Ablation of Transparent Materials Using Excimer Lasers for Photonic Applications. Opt Rev 6:427–441. doi:10.​1007/​s10043-005-0427-x
Zurück zum Zitat Chung CK, Tu KZ (2014) Application of metal film protection to microfluidic chip fabrication using CO2 laser ablation. Microsyst Technol 10-11:1987-1992. doi:10.1007/s00542-013-2041-3 Chung CK, Tu KZ (2014) Application of metal film protection to microfluidic chip fabrication using CO2 laser ablation. Microsyst Technol 10-11:1987-1992. doi:10.​1007/​s00542-013-2041-3
Zurück zum Zitat Costela A, García-Moreno I, Florido F, Figuera JM, Sastre R, Hooker SM (1995) Laser ablation of polymeric materials at 157 nm. J Appl Phys 6:2343–2350. doi:10.1063/1.358756 Costela A, García-Moreno I, Florido F, Figuera JM, Sastre R, Hooker SM (1995) Laser ablation of polymeric materials at 157 nm. J Appl Phys 6:2343–2350. doi:10.​1063/​1.​358756
Zurück zum Zitat Crabtree HJ, Lauzon J, Morrissey YC, Taylor BJ, Liang T, Johnstone RW, Stickel AJ, Manage DP, Atrazhev A (2012) Inhibition of on-chip PCR using PDMS–glass hybrid microfluidic chips. Microfluid Nanofluid 3:383–398. doi:10.1007/s10404-012-0968-9 Crabtree HJ, Lauzon J, Morrissey YC, Taylor BJ, Liang T, Johnstone RW, Stickel AJ, Manage DP, Atrazhev A (2012) Inhibition of on-chip PCR using PDMS–glass hybrid microfluidic chips. Microfluid Nanofluid 3:383–398. doi:10.​1007/​s10404-012-0968-9
Zurück zum Zitat Daridon A, Fascio V, Lichtenberg J, Wütrich R, Langen H, Verpoorte E, De Rooij N (2001) Multi-layer microfluidic glass chips for microanalytical applications. Fresenius’ J Anal Chem 2:261–269. doi:10.1007/s002160101004 Daridon A, Fascio V, Lichtenberg J, Wütrich R, Langen H, Verpoorte E, De Rooij N (2001) Multi-layer microfluidic glass chips for microanalytical applications. Fresenius’ J Anal Chem 2:261–269. doi:10.​1007/​s002160101004
Zurück zum Zitat Du L, Chang H, Song M, Liu C (2012) A method of water pretreatment to improve the thermal bonding rate of PMMA microfluidic chip. Microsyst Technol 4:423–428. doi:10.1007/s00542-012-1466-4 Du L, Chang H, Song M, Liu C (2012) A method of water pretreatment to improve the thermal bonding rate of PMMA microfluidic chip. Microsyst Technol 4:423–428. doi:10.​1007/​s00542-012-1466-4
Zurück zum Zitat Du L, Chang H, Song M, Liu C (2012) The effect of injection molding PMMA microfluidic chips thickness uniformity on the thermal bonding ratio of chips. Microsyst Technol 6:815-822. doi:10.1007/s00542-012-1514-0 Du L, Chang H, Song M, Liu C (2012) The effect of injection molding PMMA microfluidic chips thickness uniformity on the thermal bonding ratio of chips. Microsyst Technol 6:815-822. doi:10.​1007/​s00542-012-1514-0
Zurück zum Zitat Fu LM, Ju WJ, Yang RJ, Wang YN (2012) Rapid prototyping of glass-based microfluidic chips utilizing two-pass defocused CO2 laser beam method. Microfluid Nanofluid 3:479-487. doi:10.1007/s10404-012-1066-8 Fu LM, Ju WJ, Yang RJ, Wang YN (2012) Rapid prototyping of glass-based microfluidic chips utilizing two-pass defocused CO2 laser beam method. Microfluid Nanofluid 3:479-487. doi:10.​1007/​s10404-012-1066-8
Zurück zum Zitat Guan X, Zhang Hj, Bi YN, Zhang L, Hao Dl (2010) Rapid detection of pathogens using antibody-coated microbeads with bioluminescence in microfluidic chips. Biomed Microdevices 4:683–691. doi:10.1007/s10544-010-9421-6 Guan X, Zhang Hj, Bi YN, Zhang L, Hao Dl (2010) Rapid detection of pathogens using antibody-coated microbeads with bioluminescence in microfluidic chips. Biomed Microdevices 4:683–691. doi:10.​1007/​s10544-010-9421-6
Zurück zum Zitat Habouti S, Kunstmann-Olsen C, Hoyland JD, Rubahn H-G, Es-Souni M (2014) In situ ZnO–PVA nanocomposite coated microfluidic chips for biosensing. Appl Phys A 2:645–649. doi:10.1007/s00339-014-8397-0 Habouti S, Kunstmann-Olsen C, Hoyland JD, Rubahn H-G, Es-Souni M (2014) In situ ZnO–PVA nanocomposite coated microfluidic chips for biosensing. Appl Phys A 2:645–649. doi:10.​1007/​s00339-014-8397-0
Zurück zum Zitat Heiskanen A, Coman V, Kostesha N, Sabourin D, Haslett N, Baronian K, Gorton L, Dufva M, Emnéus J (2013) Bioelectrochemical probing of intracellular redox processes in living yeast cells-application of redox polymer wiring in a microfluidic environment. Anal Bioanal Chem, 11:3847-3858. doi:10.1007/s00216-013-6709-4 Heiskanen A, Coman V, Kostesha N, Sabourin D, Haslett N, Baronian K, Gorton L, Dufva M, Emnéus J (2013) Bioelectrochemical probing of intracellular redox processes in living yeast cells-application of redox polymer wiring in a microfluidic environment. Anal Bioanal Chem, 11:3847-3858. doi:10.​1007/​s00216-013-6709-4
Zurück zum Zitat Herbst L, Klaft I, Wenzel T, Rebhan U (2003) High-repetition-rate excimer laser for micromachining. Proc SPIE 4971:87-95. doi:10.1117/12.479174 Herbst L, Klaft I, Wenzel T, Rebhan U (2003) High-repetition-rate excimer laser for micromachining. Proc SPIE 4971:87-95. doi:10.​1117/​12.​479174
Zurück zum Zitat Hong TF, Ju WJ, Wu MC, Tai CH, Tsai CH, Fu LM (2010) Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser. Microfluid Nanofluid 6:1125-1133. doi:10.1007/s10404-010-0633-0 Hong TF, Ju WJ, Wu MC, Tai CH, Tsai CH, Fu LM (2010) Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser. Microfluid Nanofluid 6:1125-1133. doi:10.​1007/​s10404-010-0633-0
Zurück zum Zitat Jensen MF, Noerholm M, Christensen LH, Geschke O (2003) Microstructure fabrication with a CO2 laser system: characterization and fabrication of cavities produced by raster scanning of the laser beam. Lab Chip 4:302-307. doi:10.1039/B308153B Jensen MF, Noerholm M, Christensen LH, Geschke O (2003) Microstructure fabrication with a CO2 laser system: characterization and fabrication of cavities produced by raster scanning of the laser beam. Lab Chip 4:302-307. doi:10.​1039/​B308153B
Zurück zum Zitat Kanamori Y, Hane K (2002) Broadband Antireflection Subwavelength Gratings for Polymethyl Methacrylate Fabricated with Molding Technique. Opt Rev 5:183-185. doi:10.1007/s10043-002-0183-0 Kanamori Y, Hane K (2002) Broadband Antireflection Subwavelength Gratings for Polymethyl Methacrylate Fabricated with Molding Technique. Opt Rev 5:183-185. doi:10.​1007/​s10043-002-0183-0
Zurück zum Zitat Klank H, Kutter JP, Geschke O (2002) CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 4:242-6. doi:10.1039/b206409j Klank H, Kutter JP, Geschke O (2002) CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 4:242-6. doi:10.​1039/​b206409j
Zurück zum Zitat Lankard JR, Wolbold G (1992) Excimer laser ablation of polyimide in a manufacturing facility. Appl Phys A 4:355-359. doi:10.1007/bf00324201 Lankard JR, Wolbold G (1992) Excimer laser ablation of polyimide in a manufacturing facility. Appl Phys A 4:355-359. doi:10.​1007/​bf00324201
Zurück zum Zitat McGinty S, O'Connor GM, Glynn TJ (2005) A comparative study of channel formation in polymer materials using VUV and UV nano-second laser sources for use in micro-fluidic applications. Proc SPIE 5825:622-633. doi:10.1117/12.605144 McGinty S, O'Connor GM, Glynn TJ (2005) A comparative study of channel formation in polymer materials using VUV and UV nano-second laser sources for use in micro-fluidic applications. Proc SPIE 5825:622-633. doi:10.​1117/​12.​605144
Zurück zum Zitat Obata K, Sugioka K, Shimazawa N, Midorikawa K (2006) Fabrication of microchip based on UV transparent polymer for DNA electrophoresis by F2 laser ablation. Appl Phys A 3:251-255. doi:10.1007/s00339-006-3618-9 Obata K, Sugioka K, Shimazawa N, Midorikawa K (2006) Fabrication of microchip based on UV transparent polymer for DNA electrophoresis by F2 laser ablation. Appl Phys A 3:251-255. doi:10.​1007/​s00339-006-3618-9
Zurück zum Zitat Pemg BY, Wu CW, Shen YK, Lin Y (2010) Microfluidic chip fabrication using hot embossing and thermal bonding of COP. Polym Adv Technol 7:457-466. doi:10.1002/pat.1447 Pemg BY, Wu CW, Shen YK, Lin Y (2010) Microfluidic chip fabrication using hot embossing and thermal bonding of COP. Polym Adv Technol 7:457-466. doi:10.​1002/​pat.​1447
Zurück zum Zitat Prakash S, Kumar S (2015) Fabrication of microchannels on transparent PMMA using CO2 Laser (10.6 μm) for microfluidic applications: An experimental investigation. Int J Precis Eng Manuf 2:361-366. doi:10.1007/s12541-015-0047-8 Prakash S, Kumar S (2015) Fabrication of microchannels on transparent PMMA using CO2 Laser (10.6 μm) for microfluidic applications: An experimental investigation. Int J Precis Eng Manuf 2:361-366. doi:10.​1007/​s12541-015-0047-8
Zurück zum Zitat Qi H, Wang X, Chen T, Ma X, Zuo T (2009) Fabrication and characterization of a polymethyl methacrylate continuous-flow PCR microfluidic chip using CO2 laser ablation. Microsyst Technol 7:1027-1030. doi:10.1007/s00542-009-0843-0 Qi H, Wang X, Chen T, Ma X, Zuo T (2009) Fabrication and characterization of a polymethyl methacrylate continuous-flow PCR microfluidic chip using CO2 laser ablation. Microsyst Technol 7:1027-1030. doi:10.​1007/​s00542-009-0843-0
Zurück zum Zitat Queste S, Salut R, Clatot S, Rauch J-Y, Khan Malek CG (2010) Manufacture of microfluidic glass chips by deep plasma etching, femtosecond laser ablation, and anodic bonding. Microsyst Technol 8:1485-1493. doi:10.1007/s00542-010-1020-1 Queste S, Salut R, Clatot S, Rauch J-Y, Khan Malek CG (2010) Manufacture of microfluidic glass chips by deep plasma etching, femtosecond laser ablation, and anodic bonding. Microsyst Technol 8:1485-1493. doi:10.​1007/​s00542-010-1020-1
Zurück zum Zitat Thian SCH, Fuh JYH, Wong YS, Loh HT, Gian PW, Tang Y (2008) Fabrication of microfluidic channel utilizing silicone rubber with vacuum casting. Microsyst Technol 8:1125-1135. doi:10.1007/s00542-008-0640-1 Thian SCH, Fuh JYH, Wong YS, Loh HT, Gian PW, Tang Y (2008) Fabrication of microfluidic channel utilizing silicone rubber with vacuum casting. Microsyst Technol 8:1125-1135. doi:10.​1007/​s00542-008-0640-1
Zurück zum Zitat Wang L, Liu W, Li S, Liu T, Yan X, Shi Y, Cheng Z, Chen C (2015) Fast fabrication of microfluidic devices using a low-cost prototyping method. Microsyst Technol 1-10. doi:10.1007/s00542-015-2465-z Wang L, Liu W, Li S, Liu T, Yan X, Shi Y, Cheng Z, Chen C (2015) Fast fabrication of microfluidic devices using a low-cost prototyping method. Microsyst Technol 1-10. doi:10.​1007/​s00542-015-2465-z
Zurück zum Zitat Wang X, Zhang L, Chen G (2011) Hot embossing and thermal bonding of poly(methyl methacrylate) microfluidic chips using positive temperature coefficient ceramic heater. Anal Bioanal Chem 8:2657-2665. doi:10.1007/s00216-011-5377-5 Wang X, Zhang L, Chen G (2011) Hot embossing and thermal bonding of poly(methyl methacrylate) microfluidic chips using positive temperature coefficient ceramic heater. Anal Bioanal Chem 8:2657-2665. doi:10.​1007/​s00216-011-5377-5
Zurück zum Zitat Wu CL, Li CC, Lu CF, Yang SY (2012) Development of two step carbon dioxide assisted thermal fusion PMMA bonding process. Microsyst Technol 4:409-414. doi:10.1007/s00542-012-1427-y Wu CL, Li CC, Lu CF, Yang SY (2012) Development of two step carbon dioxide assisted thermal fusion PMMA bonding process. Microsyst Technol 4:409-414. doi:10.​1007/​s00542-012-1427-y
Zurück zum Zitat Ye MY, Yin XF, Fang ZL (2005) DNA separation with low-viscosity sieving matrix on microfabricated polycarbonate microfluidic chips. Anal Bioanal Chem 4:820-827. doi:10.1007/s00216-004-2988-0 Ye MY, Yin XF, Fang ZL (2005) DNA separation with low-viscosity sieving matrix on microfabricated polycarbonate microfluidic chips. Anal Bioanal Chem 4:820-827. doi:10.​1007/​s00216-004-2988-0
Zurück zum Zitat Zhang Z, Luo Y, Wang X, Zheng Y, Zhang Y, Wang L (2010) A low temperature ultrasonic bonding method for PMMA microfluidic chips. Microsyst Technol 4:533-541. doi:10.1007/s00542-010-1027-7 Zhang Z, Luo Y, Wang X, Zheng Y, Zhang Y, Wang L (2010) A low temperature ultrasonic bonding method for PMMA microfluidic chips. Microsyst Technol 4:533-541. doi:10.​1007/​s00542-010-1027-7
Zurück zum Zitat Zhang Z, Luo Y, Wang X, He S, Meng F, Wang L (2010) Bonding of planar poly (methyl methacrylate) (PMMA) nanofluidic channels using thermal assisted ultrasonic bonding method. Microsyst Technol 12:2043-2048. doi:10.1007/s00542-010-1140-7 Zhang Z, Luo Y, Wang X, He S, Meng F, Wang L (2010) Bonding of planar poly (methyl methacrylate) (PMMA) nanofluidic channels using thermal assisted ultrasonic bonding method. Microsyst Technol 12:2043-2048. doi:10.​1007/​s00542-010-1140-7
Metadaten
Titel
PMMA microfluidic chip fabrication using laser ablation and low temperature bonding with OCA film and LOCA
verfasst von
Kan Liu
Jianzhen Xiang
Zhao Ai
Shoukun Zhang
Yi Fang
Ting Chen
Qiongwei Zhou
Songzhan Li
Shengxiang Wang
Nangang Zhang
Publikationsdatum
02.04.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 6/2017
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-2924-1

Weitere Artikel der Ausgabe 6/2017

Microsystem Technologies 6/2017 Zur Ausgabe

Neuer Inhalt