Skip to main content
Erschienen in: Microsystem Technologies 10/2017

19.01.2017 | Technical Paper

Rapid prototyping of cyclic olefin copolymer based microfluidic system with CO2 laser ablation

verfasst von: Jianchen Cai, Jinyun Jiang, Feng Gao, Guangnan Jia, Jian Zhuang, Gang Tang, Yiqiang Fan

Erschienen in: Microsystem Technologies | Ausgabe 10/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cyclic olefin copolymer (COC) has high chemical resistance with low water absorption and good optical transparency in visual and near UV range, which is a promising material for the polymer-based microfluidic systems. A comprehensive method for the rapid prototyping of COC based microfluidic system using CO2 laser ablation was proposed in this study. The COC substrate was fabricated by injection molding with a commercial injection molding machine, then CO2 laser was used for direct laser ablation of microchannels on the surface of COC substrate, to seal the laser ablated microchannels, the thermal compression bonding method for COC-based substrates was also provided in this research. The profile of the microchannels was carefully studied with different laser ablation power and scan speed, microfluidic device fabricated using the proposed method were also presented in this research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Battle KN, Jackson JM, Witek MA, Hupert ML, Hunsucker SA, Armistead PM, Soper SA (2014) Solid-phase extraction and purification of membrane proteins using a UV-modified PMMA microfluidic bioaffinity μSPE device. Analyst 139:1355–1363CrossRef Battle KN, Jackson JM, Witek MA, Hupert ML, Hunsucker SA, Armistead PM, Soper SA (2014) Solid-phase extraction and purification of membrane proteins using a UV-modified PMMA microfluidic bioaffinity μSPE device. Analyst 139:1355–1363CrossRef
Zurück zum Zitat Chang KW, Li J, Yang CH, Shiesh SC, Lee GB (2015) An integrated microfluidic system for measurement of glycated hemoglobin Levels by using an aptamer–antibody assay on magnetic beads. Biosens Bioelectron 68:397–403CrossRef Chang KW, Li J, Yang CH, Shiesh SC, Lee GB (2015) An integrated microfluidic system for measurement of glycated hemoglobin Levels by using an aptamer–antibody assay on magnetic beads. Biosens Bioelectron 68:397–403CrossRef
Zurück zum Zitat Chen W, Lam RH, Fu J (2011) Photolithographic surface micromachining of polydimethylsiloxane (PDMS). Lab Chip 12:391–395CrossRef Chen W, Lam RH, Fu J (2011) Photolithographic surface micromachining of polydimethylsiloxane (PDMS). Lab Chip 12:391–395CrossRef
Zurück zum Zitat Geschke O, Perozziello G, Bundgaard F (2006) Rapid prototyping tools and methods for all-Topas® cyclic olefin copolymer fluidic microsystems. Proc Inst Mech Eng Part C: J Mech Eng Sci 220:1625–1632. doi:10.1243/09544062jmes295 CrossRef Geschke O, Perozziello G, Bundgaard F (2006) Rapid prototyping tools and methods for all-Topas® cyclic olefin copolymer fluidic microsystems. Proc Inst Mech Eng Part C: J Mech Eng Sci 220:1625–1632. doi:10.​1243/​09544062jmes295 CrossRef
Zurück zum Zitat Hu X, Lin X, He Q, Chen H (2014) Electrochemical detection of droplet contents in polystyrene microfluidic chip with integrated micro film electrodes. J Electroanal Chem 726:7–14CrossRef Hu X, Lin X, He Q, Chen H (2014) Electrochemical detection of droplet contents in polystyrene microfluidic chip with integrated micro film electrodes. J Electroanal Chem 726:7–14CrossRef
Zurück zum Zitat Iwai K, Shih KC, Lin X, Brubaker TA, Sochol RD, Lin L (2014) Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes. Lab Chip 14:3790–3799CrossRef Iwai K, Shih KC, Lin X, Brubaker TA, Sochol RD, Lin L (2014) Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes. Lab Chip 14:3790–3799CrossRef
Zurück zum Zitat Li H, Fan Y, Kodzius R, Foulds IG (2012) Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system. Microsyst Technol 18:373–379CrossRef Li H, Fan Y, Kodzius R, Foulds IG (2012) Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system. Microsyst Technol 18:373–379CrossRef
Zurück zum Zitat Lyu SR, Chen WJ, Hsieh WH (2014) Measuring transport properties of cell membranes by a PDMS microfluidic device with controllability over changing rate of extracellular solution. Sens Actuators B Chem 197:28–34CrossRef Lyu SR, Chen WJ, Hsieh WH (2014) Measuring transport properties of cell membranes by a PDMS microfluidic device with controllability over changing rate of extracellular solution. Sens Actuators B Chem 197:28–34CrossRef
Zurück zum Zitat Macosko E et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214CrossRef Macosko E et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214CrossRef
Zurück zum Zitat Mohammed MI et al (2015) Improved manufacturing quality and bonding of laser machined microfluidic systems. Proc Technol 20:219–224CrossRef Mohammed MI et al (2015) Improved manufacturing quality and bonding of laser machined microfluidic systems. Proc Technol 20:219–224CrossRef
Zurück zum Zitat Nieto D, Couceiro R, Aymerich M, Lopez-Lopez R, Abal M, Flores-Arias MT (2015) A laser-based technology for fabricating a soda-lime glass based microfluidic device for circulating tumour cell capture. Colloids Surf B Biointerfaces 134:363–369. doi:10.1016/j.colsurfb.2015.07.007 CrossRef Nieto D, Couceiro R, Aymerich M, Lopez-Lopez R, Abal M, Flores-Arias MT (2015) A laser-based technology for fabricating a soda-lime glass based microfluidic device for circulating tumour cell capture. Colloids Surf B Biointerfaces 134:363–369. doi:10.​1016/​j.​colsurfb.​2015.​07.​007 CrossRef
Zurück zum Zitat Ogończyk D, Wegrzyn J, Jankowski P, Dabrowski B, Garstecki P (2010) Bonding of microfluidic devices fabricated in polycarbonate. Lab Chip 10:1324–1327CrossRef Ogończyk D, Wegrzyn J, Jankowski P, Dabrowski B, Garstecki P (2010) Bonding of microfluidic devices fabricated in polycarbonate. Lab Chip 10:1324–1327CrossRef
Zurück zum Zitat Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189CrossRef Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189CrossRef
Zurück zum Zitat Wang X, Liedert C, Liedert R, Papautsky I (2016) A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells. Lab Chip 16:1821–1830CrossRef Wang X, Liedert C, Liedert R, Papautsky I (2016) A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells. Lab Chip 16:1821–1830CrossRef
Zurück zum Zitat Warkiani ME, Khoo BL, Wu L, Tay AKP, Bhagat AAS, Han J, Lim CT (2016) Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nat Protoc 11:134–148CrossRef Warkiani ME, Khoo BL, Wu L, Tay AKP, Bhagat AAS, Han J, Lim CT (2016) Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nat Protoc 11:134–148CrossRef
Zurück zum Zitat Yücel M, Beaton AD, Dengler M, Mowlem MC, Sohl F, Sommer S (2015) Nitrate and nitrite variability at the seafloor of an oxygen minimum zone revealed by a novel microfluidic in-situ chemical sensor. Plos One 10:e0132785CrossRef Yücel M, Beaton AD, Dengler M, Mowlem MC, Sohl F, Sommer S (2015) Nitrate and nitrite variability at the seafloor of an oxygen minimum zone revealed by a novel microfluidic in-situ chemical sensor. Plos One 10:e0132785CrossRef
Zurück zum Zitat Zhou Y, Lin Q (2014) Microfluidic flow-free generation of chemical concentration gradients. Sens Actuators B Chem 190:334–341CrossRef Zhou Y, Lin Q (2014) Microfluidic flow-free generation of chemical concentration gradients. Sens Actuators B Chem 190:334–341CrossRef
Metadaten
Titel
Rapid prototyping of cyclic olefin copolymer based microfluidic system with CO2 laser ablation
verfasst von
Jianchen Cai
Jinyun Jiang
Feng Gao
Guangnan Jia
Jian Zhuang
Gang Tang
Yiqiang Fan
Publikationsdatum
19.01.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 10/2017
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-017-3282-3

Weitere Artikel der Ausgabe 10/2017

Microsystem Technologies 10/2017 Zur Ausgabe

Neuer Inhalt