Skip to main content
Erschienen in: Microsystem Technologies 5/2017

04.03.2016 | Technical Paper

A thermal bonding method based on O2 plasma and water treatment for fabrication of PET planar nanofluidic device

verfasst von: Li Chen, Zhifu Yin, Helin Zou, Junshan Liu, Chong Liu, Kehong Li

Erschienen in: Microsystem Technologies | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, a thermal bonding method based on O2 plasma and water treatment was proposed to address the high dimension loss and low bonding strength issue during plastic planar nanofluidic device fabrication process. By this method, the PET (polyethylene terephthalate) planar nanofluidic device could be bonded at low temperature of 60 °C, force of 100 N and time of 15 min. To decrease the dimension loss and increase the bonding strength, thermal bonding parameters were optimized. The tensile test showed that the bonding strength of the PET planar nanofluidic device could be as high as 288.1 N. The fluorescence dye filling test indicated that there was no leakage and block in the PET planar nanofluidic device.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abgrall P, Low L-N, Nguyen N-T (2007) Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding. Lab Chip 7(4):520–522CrossRef Abgrall P, Low L-N, Nguyen N-T (2007) Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding. Lab Chip 7(4):520–522CrossRef
Zurück zum Zitat Bhattacharya S, Datta A, Berg JM, Gangopadhyay S (2005) Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J Microelectromech Syst 14(3):590–597CrossRef Bhattacharya S, Datta A, Berg JM, Gangopadhyay S (2005) Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J Microelectromech Syst 14(3):590–597CrossRef
Zurück zum Zitat Brown L, Koerner T, Horton JH, Oleschuk RD (2006) Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents. Lab Chip 6(1):66–73CrossRef Brown L, Koerner T, Horton JH, Oleschuk RD (2006) Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents. Lab Chip 6(1):66–73CrossRef
Zurück zum Zitat Chantiwas R, Hupert ML, Pullagurla SR, Balamurugan S, Tamarit-Lopez J, Park S, Datta P, Goettert J, Cho Y-K, Soper SA (2010) Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits. Lab Chip 10(23):3255–3264CrossRef Chantiwas R, Hupert ML, Pullagurla SR, Balamurugan S, Tamarit-Lopez J, Park S, Datta P, Goettert J, Cho Y-K, Soper SA (2010) Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits. Lab Chip 10(23):3255–3264CrossRef
Zurück zum Zitat Du L, Chang H, Song M, Liu C (2012) A method of water pretreatment to improve the thermal bonding rate of PMMA microfluidic chip. Microsyst Technol 18(4):423–428CrossRef Du L, Chang H, Song M, Liu C (2012) A method of water pretreatment to improve the thermal bonding rate of PMMA microfluidic chip. Microsyst Technol 18(4):423–428CrossRef
Zurück zum Zitat Fakes DW, Davies MC, Brown A, Newton JM (1988) The surface-analysis of a plasma modified contact-lens surface by SSIMS. Surf Interface Anal 13(4):233–236CrossRef Fakes DW, Davies MC, Brown A, Newton JM (1988) The surface-analysis of a plasma modified contact-lens surface by SSIMS. Surf Interface Anal 13(4):233–236CrossRef
Zurück zum Zitat Freedman KJ, Haq SR, Edel JB, Jemth P, Kim MJ (2013) Single molecule unfolding and stretching of protein domains inside a solid-state nanopore by electric field. Sci Rep 3:1638 Freedman KJ, Haq SR, Edel JB, Jemth P, Kim MJ (2013) Single molecule unfolding and stretching of protein domains inside a solid-state nanopore by electric field. Sci Rep 3:1638
Zurück zum Zitat Fu JP, Mao P, Han JY (2005) Nanofilter array chip for fast gel-free biomolecule separation. Appl Phys Lett 87(26):263902CrossRef Fu JP, Mao P, Han JY (2005) Nanofilter array chip for fast gel-free biomolecule separation. Appl Phys Lett 87(26):263902CrossRef
Zurück zum Zitat Hong Hanh T, Wu W, Lee NY (2012) Ethanol and UV-assisted instantaneous bonding of PMMA assemblies and tuning in bonding reversibility. Sens Actuator B-Chem 181:955–962 Hong Hanh T, Wu W, Lee NY (2012) Ethanol and UV-assisted instantaneous bonding of PMMA assemblies and tuning in bonding reversibility. Sens Actuator B-Chem 181:955–962
Zurück zum Zitat Jena RK, Chester SA, Srivastava V, Yue CY, Anand L, Lam YC (2011) Large-strain thermo-mechanical behavior of cyclic olefin copolymers: application to hot embossing and thermal bonding for the fabrication of microfluidic devices. Sens Actuator B-Chem 155(1):93–105CrossRef Jena RK, Chester SA, Srivastava V, Yue CY, Anand L, Lam YC (2011) Large-strain thermo-mechanical behavior of cyclic olefin copolymers: application to hot embossing and thermal bonding for the fabrication of microfluidic devices. Sens Actuator B-Chem 155(1):93–105CrossRef
Zurück zum Zitat Kutchoukov VG, Laugere F, van der Vlist W, Pakula L, Garini Y, Bossche A (2004) Fabrication of nanofluidic devices using glass-to-glass anodic bonding. Sens Actuator A-Phys 114(2–3):521–527CrossRef Kutchoukov VG, Laugere F, van der Vlist W, Pakula L, Garini Y, Bossche A (2004) Fabrication of nanofluidic devices using glass-to-glass anodic bonding. Sens Actuator A-Phys 114(2–3):521–527CrossRef
Zurück zum Zitat Li JM, Liu C, Qiao HC, Zhu LY, Chen G, Dai XD (2008) Hot embossing/bonding of a poly(ethylene terephthalate) (PET) microfluidic chip. J Micromech Microeng 18(1):015008CrossRef Li JM, Liu C, Qiao HC, Zhu LY, Chen G, Dai XD (2008) Hot embossing/bonding of a poly(ethylene terephthalate) (PET) microfluidic chip. J Micromech Microeng 18(1):015008CrossRef
Zurück zum Zitat Liu C, Li JM, Liu JS, Wang LD (2009) Deformation behavior of solid polymer during hot embossing process. Microelectron Eng 87(2):200–207CrossRef Liu C, Li JM, Liu JS, Wang LD (2009) Deformation behavior of solid polymer during hot embossing process. Microelectron Eng 87(2):200–207CrossRef
Zurück zum Zitat Mao P, Han JY (2005) Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding. Lab Chip 5(8):837–844CrossRef Mao P, Han JY (2005) Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding. Lab Chip 5(8):837–844CrossRef
Zurück zum Zitat Ozgen O, Aksoy EA, Hasirci V, Hasirci N (2012) Surface characterization and radical decay studies of oxygen plasma-treated PMMA films. Surf Interface Anal 45(4):844–853CrossRef Ozgen O, Aksoy EA, Hasirci V, Hasirci N (2012) Surface characterization and radical decay studies of oxygen plasma-treated PMMA films. Surf Interface Anal 45(4):844–853CrossRef
Zurück zum Zitat Peng-Peng W, Sanboh L, Harmon JP (1994) Ethanol-induced crack healing in poly(methyl methacrylate). J Polym Sci Pt B-Polym Phys 32(7):1217–1227CrossRef Peng-Peng W, Sanboh L, Harmon JP (1994) Ethanol-induced crack healing in poly(methyl methacrylate). J Polym Sci Pt B-Polym Phys 32(7):1217–1227CrossRef
Zurück zum Zitat Plecis A, Schoch RB, Renaud P (2005) Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett 5(6):1147–1155CrossRef Plecis A, Schoch RB, Renaud P (2005) Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett 5(6):1147–1155CrossRef
Zurück zum Zitat Riehn R, Austin RH, Sturm JC (2006) A nanofluidic railroad switch for DNA. Nano Lett 6(9):1973–1976CrossRef Riehn R, Austin RH, Sturm JC (2006) A nanofluidic railroad switch for DNA. Nano Lett 6(9):1973–1976CrossRef
Zurück zum Zitat Schoch RB, Renaud P (2005) Ion transport through nanoslits dominated by the effective surface charge. Appl Phys Lett 86(25):253111CrossRef Schoch RB, Renaud P (2005) Ion transport through nanoslits dominated by the effective surface charge. Appl Phys Lett 86(25):253111CrossRef
Zurück zum Zitat Sparreboom W, van den Berg A, Eijkel JCT (2009) Principles and applications of nanofluidic transport. Nat Nanotechnol 4(11):713–720CrossRef Sparreboom W, van den Berg A, Eijkel JCT (2009) Principles and applications of nanofluidic transport. Nat Nanotechnol 4(11):713–720CrossRef
Zurück zum Zitat Tsao C-W, DeVoe DL (2009) Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluid 6(1):1–16CrossRef Tsao C-W, DeVoe DL (2009) Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluid 6(1):1–16CrossRef
Zurück zum Zitat Vinh-Nguyen P, Nam-Trung N, Chun Y, Joseph P, Gue AM (2012) Fabrication and experimental characterization of nanochannels. J Heat Transf Trans ASME 134(5):051012CrossRef Vinh-Nguyen P, Nam-Trung N, Chun Y, Joseph P, Gue AM (2012) Fabrication and experimental characterization of nanochannels. J Heat Transf Trans ASME 134(5):051012CrossRef
Zurück zum Zitat Wang YC, Stevens AL, Han JY (2005) Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal Chem 77(14):4293–4299CrossRef Wang YC, Stevens AL, Han JY (2005) Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal Chem 77(14):4293–4299CrossRef
Zurück zum Zitat Xudi W, Liangjin G, Jingjing L, Xiaojun L, Keqiang Q, Yangchao T, Shaojun F, Zheng C (2009) Fabrication of enclosed nanofluidic channels by UV cured imprinting and optimized thermal bonding of SU-8 photoresist. Microelectron Eng 86(4–6):1347–1349 Xudi W, Liangjin G, Jingjing L, Xiaojun L, Keqiang Q, Yangchao T, Shaojun F, Zheng C (2009) Fabrication of enclosed nanofluidic channels by UV cured imprinting and optimized thermal bonding of SU-8 photoresist. Microelectron Eng 86(4–6):1347–1349
Zurück zum Zitat Yin Z, Cheng E, Zou H, Jurčíček P (2013) Analysis of polymer viscoelastic properties based on compressive creep tests during hot embossing for two-dimensional polyethylene terephthalate nanochannels. Polym Eng Sci 54(10):2398–2406CrossRef Yin Z, Cheng E, Zou H, Jurčíček P (2013) Analysis of polymer viscoelastic properties based on compressive creep tests during hot embossing for two-dimensional polyethylene terephthalate nanochannels. Polym Eng Sci 54(10):2398–2406CrossRef
Zurück zum Zitat Yin Z, Cheng E, Zou H (2014a) A novel hybrid patterning technique for micro and nanochannel fabrication by integrating hot embossing and inverse UV photolithography. Lab Chip 14(9):1614–1621CrossRef Yin Z, Cheng E, Zou H (2014a) A novel hybrid patterning technique for micro and nanochannel fabrication by integrating hot embossing and inverse UV photolithography. Lab Chip 14(9):1614–1621CrossRef
Zurück zum Zitat Yin Z, Cheng E, Zou H, Chen L, Xu S (2014b) Fabrication of two dimensional polyethylene terephthalate nanofluidic chip using hot embossing and thermal bonding technique. Biomicrofluidics 8(6):066503CrossRef Yin Z, Cheng E, Zou H, Chen L, Xu S (2014b) Fabrication of two dimensional polyethylene terephthalate nanofluidic chip using hot embossing and thermal bonding technique. Biomicrofluidics 8(6):066503CrossRef
Zurück zum Zitat Zaroulis JS, Boyce MC (1997) Temperature, strain rate, and strain state dependence of the evolution in mechanical behaviour and structure of poly(ethylene terephthalate) with finite strain deformation. Polymer 38(6):1303–1315CrossRef Zaroulis JS, Boyce MC (1997) Temperature, strain rate, and strain state dependence of the evolution in mechanical behaviour and structure of poly(ethylene terephthalate) with finite strain deformation. Polymer 38(6):1303–1315CrossRef
Metadaten
Titel
A thermal bonding method based on O2 plasma and water treatment for fabrication of PET planar nanofluidic device
verfasst von
Li Chen
Zhifu Yin
Helin Zou
Junshan Liu
Chong Liu
Kehong Li
Publikationsdatum
04.03.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 5/2017
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-2897-0

Weitere Artikel der Ausgabe 5/2017

Microsystem Technologies 5/2017 Zur Ausgabe

Neuer Inhalt