Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 8/2018

05-07-2018

A Review on Micro- and Nanoscratching/Tribology at High Temperatures: Instrumentation and Experimentation

Authors: Saeed Zare Chavoshi, Shuozhi Xu

Published in: Journal of Materials Engineering and Performance | Issue 8/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High-temperature micro-/nanomechanics has attracted much interest over the last decade, primarily because of the urgent need to understand the mechanical and tribological properties of advanced engineering materials at micro-/nanoscale and the underlying physics controlling such properties at operationally relevant conditions. Recent years have subsequently witnessed the swift growth and development of new high-temperature micro- and nanoscratching/tribology instruments. Here, we present an overview of fundamental principles and developments in these instruments, discuss pertinent findings on the topic in detail, and outline current challenges and promising future directions in the field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R.W. Carpick and M. Salmeron, Scratching the Surface: Fundamental Investigations of Tribology with Atomic Force Microscopy, Chem. Rev., 1997, 97, p 1163–1194CrossRef R.W. Carpick and M. Salmeron, Scratching the Surface: Fundamental Investigations of Tribology with Atomic Force Microscopy, Chem. Rev., 1997, 97, p 1163–1194CrossRef
2.
go back to reference R. Consiglio, N. Randall, B. Bellaton, and J. Von Stebut, The Nano-Scratch Tester (NST) as a New Tool for Assessing the Strength of Ultrathin Hard Coatings and the Mar Resistance of Polymer Films, Thin Solid Films, 1998, 332, p 151–156CrossRef R. Consiglio, N. Randall, B. Bellaton, and J. Von Stebut, The Nano-Scratch Tester (NST) as a New Tool for Assessing the Strength of Ultrathin Hard Coatings and the Mar Resistance of Polymer Films, Thin Solid Films, 1998, 332, p 151–156CrossRef
3.
go back to reference T. Tsui, G. Pharr, W. Oliver, Y. Chung, E. Cutiongco, C. Bhatia, R. White, R. Rhoades, and S. Gorbatkin, Nanoindentation and Nanoscratching of Hard Coating Materials for Magnetic Disks, MRS Proceedings, Cambridge Univ Press, 1994. T. Tsui, G. Pharr, W. Oliver, Y. Chung, E. Cutiongco, C. Bhatia, R. White, R. Rhoades, and S. Gorbatkin, Nanoindentation and Nanoscratching of Hard Coating Materials for Magnetic Disks, MRS Proceedings, Cambridge Univ Press, 1994.
4.
go back to reference B. Beake, A. Harris, and T. Liskiewicz, Review of Recent Progress in Nanoscratch Testing, Tribol. Mater. Surf. Interfaces, 2013, 7, p 87–96CrossRef B. Beake, A. Harris, and T. Liskiewicz, Review of Recent Progress in Nanoscratch Testing, Tribol. Mater. Surf. Interfaces, 2013, 7, p 87–96CrossRef
5.
go back to reference S.Z. Chavoshi, S. Goel, and X. Luo, Molecular Dynamics Simulation Investigation on the Plastic Flow Behaviour of Silicon During Nanometric Cutting, Modell. Simul. Mater. Sci. Eng., 2015, 24, p 015002CrossRef S.Z. Chavoshi, S. Goel, and X. Luo, Molecular Dynamics Simulation Investigation on the Plastic Flow Behaviour of Silicon During Nanometric Cutting, Modell. Simul. Mater. Sci. Eng., 2015, 24, p 015002CrossRef
6.
go back to reference S.Z. Chavoshi, S. Goel, and X. Luo, Influence of Temperature on the Anisotropic Cutting Behaviour of Single Crystal Silicon: A Molecular Dynamics Simulation Investigation, J. Manuf. Process., 2016, 23, p 201–210CrossRef S.Z. Chavoshi, S. Goel, and X. Luo, Influence of Temperature on the Anisotropic Cutting Behaviour of Single Crystal Silicon: A Molecular Dynamics Simulation Investigation, J. Manuf. Process., 2016, 23, p 201–210CrossRef
7.
go back to reference S.Z. Chavoshi and X. Luo, An Atomistic Simulation Investigation on Chip Related Phenomena in Nanometric Cutting of Single Crystal Silicon at Elevated Temperatures, Comput. Mater. Sci., 2016, 113, p 1–10CrossRef S.Z. Chavoshi and X. Luo, An Atomistic Simulation Investigation on Chip Related Phenomena in Nanometric Cutting of Single Crystal Silicon at Elevated Temperatures, Comput. Mater. Sci., 2016, 113, p 1–10CrossRef
8.
go back to reference S.Z. Chavoshi and X. Luo, Molecular Dynamics Simulation Study of Deformation Mechanisms in 3C-SiC During Nanometric Cutting at Elevated Temperatures, Mater. Sci. Eng. A, 2016, 654, p 400–417CrossRef S.Z. Chavoshi and X. Luo, Molecular Dynamics Simulation Study of Deformation Mechanisms in 3C-SiC During Nanometric Cutting at Elevated Temperatures, Mater. Sci. Eng. A, 2016, 654, p 400–417CrossRef
9.
go back to reference S.Z. Chavoshi and X. Luo, Atomic-Scale Characterization of Occurring Phenomena During Hot Nanometric Cutting of Single Crystal 3C-SiC, RSC Adv., 2016, 6, p 71409–71424CrossRef S.Z. Chavoshi and X. Luo, Atomic-Scale Characterization of Occurring Phenomena During Hot Nanometric Cutting of Single Crystal 3C-SiC, RSC Adv., 2016, 6, p 71409–71424CrossRef
10.
go back to reference S.Z. Chavoshi, S. Xu, and X. Luo, Dislocation-Mediated Plasticity in Silicon During Nanometric Cutting: A Molecular Dynamics Simulation Study, Mater. Sci. Semicond. Process., 2016, 51, p 60–70CrossRef S.Z. Chavoshi, S. Xu, and X. Luo, Dislocation-Mediated Plasticity in Silicon During Nanometric Cutting: A Molecular Dynamics Simulation Study, Mater. Sci. Semicond. Process., 2016, 51, p 60–70CrossRef
11.
go back to reference S.Z. Chavoshi and S. Xu, Temperature-Dependent Nanoindentation Response of Materials, MRS Commun., 2018, 8, p 15–28CrossRef S.Z. Chavoshi and S. Xu, Temperature-Dependent Nanoindentation Response of Materials, MRS Commun., 2018, 8, p 15–28CrossRef
13.
go back to reference S.Z. Chavoshi and S. Xu, Nanoindentation/Scratching at Finite Temperatures: Insights from Atomistic-Based Modeling. Submitted, (2018). S.Z. Chavoshi and S. Xu, Nanoindentation/Scratching at Finite Temperatures: Insights from Atomistic-Based Modeling. Submitted, (2018).
14.
go back to reference D. Lucca, K. Herrmann, and M. Klopfstein, Nanoindentation: Measuring Methods and Applications, CIRP Ann. Manuf. Technol., 2010, 59, p 803–819CrossRef D. Lucca, K. Herrmann, and M. Klopfstein, Nanoindentation: Measuring Methods and Applications, CIRP Ann. Manuf. Technol., 2010, 59, p 803–819CrossRef
15.
go back to reference A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A.M. Minor, and Y.-L. Shen, Indentation Across Size Scales and Disciplines: Recent Developments in Experimentation and Modeling, Acta Mater., 2007, 55, p 4015–4039CrossRef A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A.M. Minor, and Y.-L. Shen, Indentation Across Size Scales and Disciplines: Recent Developments in Experimentation and Modeling, Acta Mater., 2007, 55, p 4015–4039CrossRef
16.
go back to reference W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19, p 3–20CrossRef W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19, p 3–20CrossRef
17.
go back to reference M.R. VanLandingham, Review of Instrumented Indentation, J. Res. Natl. Inst. Stand. Technol., 2003, 108, p 249CrossRef M.R. VanLandingham, Review of Instrumented Indentation, J. Res. Natl. Inst. Stand. Technol., 2003, 108, p 249CrossRef
18.
go back to reference Y.I. Golovin, Nanoindentation and Mechanical Properties of Solids in Submicrovolumes, Thin Near-Surface Layers, and Films: A Review, Phys. Solid State, 2008, 50, p 2205–2236CrossRef Y.I. Golovin, Nanoindentation and Mechanical Properties of Solids in Submicrovolumes, Thin Near-Surface Layers, and Films: A Review, Phys. Solid State, 2008, 50, p 2205–2236CrossRef
19.
go back to reference C.A. Schuh, Nanoindentation Studies of Materials, Mater. Today, 2006, 9, p 32–40CrossRef C.A. Schuh, Nanoindentation Studies of Materials, Mater. Today, 2006, 9, p 32–40CrossRef
20.
go back to reference X. Li and B. Bhushan, A Review of Nanoindentation Continuous Stiffness Measurement Technique and Its Applications, Mater. Charact., 2002, 48, p 11–36CrossRef X. Li and B. Bhushan, A Review of Nanoindentation Continuous Stiffness Measurement Technique and Its Applications, Mater. Charact., 2002, 48, p 11–36CrossRef
21.
go back to reference A.C. Fischer-Cripps, Critical Review of Analysis and Interpretation of Nanoindentation Test Data, Surf. Coat. Technol., 2006, 200, p 4153–4165CrossRef A.C. Fischer-Cripps, Critical Review of Analysis and Interpretation of Nanoindentation Test Data, Surf. Coat. Technol., 2006, 200, p 4153–4165CrossRef
22.
go back to reference S.R. Cohen and E. Kalfon-Cohen, Dynamic Nanoindentation by Instrumented Nanoindentation and Force Microscopy: A Comparative Review, Beilstein J. Nanotechnol., 2013, 4, p 815–833CrossRef S.R. Cohen and E. Kalfon-Cohen, Dynamic Nanoindentation by Instrumented Nanoindentation and Force Microscopy: A Comparative Review, Beilstein J. Nanotechnol., 2013, 4, p 815–833CrossRef
23.
go back to reference E. Broitman, Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview, Tribol. Lett., 2017, 65, p 23CrossRef E. Broitman, Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview, Tribol. Lett., 2017, 65, p 23CrossRef
24.
go back to reference B. Bhushan and X. Li, Nanomechanical Characterisation of Solid Surfaces and Thin Films, Int. Mater. Rev., 2003, 48, p 125–164CrossRef B. Bhushan and X. Li, Nanomechanical Characterisation of Solid Surfaces and Thin Films, Int. Mater. Rev., 2003, 48, p 125–164CrossRef
25.
go back to reference A. Atkins and D. Tabor, Hardness and Deformation Properties of Solids at Very High Temperatures, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 1966. A. Atkins and D. Tabor, Hardness and Deformation Properties of Solids at Very High Temperatures, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 1966.
26.
go back to reference B. Lucas and W. Oliver, Time Dependent Indentation Testing at Non-ambient Temperatures Utilizing the High Temperature Mechanical Properties Microprobe, MRS Proceedings, Cambridge Univ Press, 1994. B. Lucas and W. Oliver, Time Dependent Indentation Testing at Non-ambient Temperatures Utilizing the High Temperature Mechanical Properties Microprobe, MRS Proceedings, Cambridge Univ Press, 1994.
27.
go back to reference W. Poisl, W. Oliver, and B. Fabes, The Relationship Between Indentation and Uniaxial Creep in Amorphous Selenium, J. Mater. Res., 1995, 10, p 2024–2032CrossRef W. Poisl, W. Oliver, and B. Fabes, The Relationship Between Indentation and Uniaxial Creep in Amorphous Selenium, J. Mater. Res., 1995, 10, p 2024–2032CrossRef
28.
go back to reference T. Suzuki and T. Ohmura, Ultra-Microindentation of Silicon at Elevated Temperatures, Philos. Mag. A, 1996, 74, p 1073–1084CrossRef T. Suzuki and T. Ohmura, Ultra-Microindentation of Silicon at Elevated Temperatures, Philos. Mag. A, 1996, 74, p 1073–1084CrossRef
29.
go back to reference S. Syed Asif and J. Pethica, Nano-scale Indentation Creep Testing at Non-ambient Temperature, J. Adhes., 1998, 67, p 153–165CrossRef S. Syed Asif and J. Pethica, Nano-scale Indentation Creep Testing at Non-ambient Temperature, J. Adhes., 1998, 67, p 153–165CrossRef
30.
go back to reference J. Smith and S. Zheng, High Temperature Nanoscale Mechanical Property Measurements, Surf. Eng., 2000, 16, p 143–146CrossRef J. Smith and S. Zheng, High Temperature Nanoscale Mechanical Property Measurements, Surf. Eng., 2000, 16, p 143–146CrossRef
31.
go back to reference A.A. Volinsky, N.R. Moody, and W.W. Gerberich, Nanoindentation of Au and Pt/Cu Thin Films at Elevated Temperatures, J. Mater. Res., 2004, 19, p 2650–2657CrossRef A.A. Volinsky, N.R. Moody, and W.W. Gerberich, Nanoindentation of Au and Pt/Cu Thin Films at Elevated Temperatures, J. Mater. Res., 2004, 19, p 2650–2657CrossRef
32.
go back to reference J.C. Trenkle, C.E. Packard, and C.A. Schuh, Hot Nanoindentation in Inert Environments, Rev. Sci. Instrum., 2010, 81, p 073901–073914CrossRef J.C. Trenkle, C.E. Packard, and C.A. Schuh, Hot Nanoindentation in Inert Environments, Rev. Sci. Instrum., 2010, 81, p 073901–073914CrossRef
33.
go back to reference I. Cheng, E. Garcia-Sanchez, and A. Hodge, Note: A Method for Minimizing Oxide Formation During Elevated Temperature Nanoindentation, Rev. Sci. Instrum., 2014, 85, p 096106CrossRef I. Cheng, E. Garcia-Sanchez, and A. Hodge, Note: A Method for Minimizing Oxide Formation During Elevated Temperature Nanoindentation, Rev. Sci. Instrum., 2014, 85, p 096106CrossRef
34.
go back to reference S. Korte, R.J. Stearn, J.M. Wheeler, and W.J. Clegg, High Temperature Microcompression and Nanoindentation in Vacuum, J. Mater. Res., 2012, 27, p 167–176CrossRef S. Korte, R.J. Stearn, J.M. Wheeler, and W.J. Clegg, High Temperature Microcompression and Nanoindentation in Vacuum, J. Mater. Res., 2012, 27, p 167–176CrossRef
35.
go back to reference J. Wheeler, D. Armstrong, W. Heinz, and R. Schwaiger, High Temperature Nanoindentation: The State of the Art and Future Challenges, Curr. Opin. Solid State Mater. Sci., 2015, 19, p 354–366CrossRef J. Wheeler, D. Armstrong, W. Heinz, and R. Schwaiger, High Temperature Nanoindentation: The State of the Art and Future Challenges, Curr. Opin. Solid State Mater. Sci., 2015, 19, p 354–366CrossRef
36.
go back to reference N. Everitt, M. Davies, and J. Smith, High Temperature Nanoindentation—The Importance of Isothermal Contact, Philos. Mag., 2011, 91, p 1221–1244CrossRef N. Everitt, M. Davies, and J. Smith, High Temperature Nanoindentation—The Importance of Isothermal Contact, Philos. Mag., 2011, 91, p 1221–1244CrossRef
37.
go back to reference H. Lee, Y. Chen, A. Claisse, and C. Schuh, Finite Element Simulation of Hot Nanoindentation in Vacuum, Exp. Mech., 2013, 53, p 1201–1211CrossRef H. Lee, Y. Chen, A. Claisse, and C. Schuh, Finite Element Simulation of Hot Nanoindentation in Vacuum, Exp. Mech., 2013, 53, p 1201–1211CrossRef
38.
go back to reference J. Wheeler, P. Brodard, and J. Michler, Elevated Temperature, In Situ Indentation with Calibrated Contact Temperatures, Philos. Mag., 2012, 92, p 3128–3141CrossRef J. Wheeler, P. Brodard, and J. Michler, Elevated Temperature, In Situ Indentation with Calibrated Contact Temperatures, Philos. Mag., 2012, 92, p 3128–3141CrossRef
39.
go back to reference X. Hou, C. Alvarez, and N. Jennett, Establishing Isothermal Contact at a Known Temperature Under Thermal Equilibrium in Elevated Temperature Instrumented Indentation Testing. Meas. Sci. Technol., 2017, 28, p 025016CrossRef X. Hou, C. Alvarez, and N. Jennett, Establishing Isothermal Contact at a Known Temperature Under Thermal Equilibrium in Elevated Temperature Instrumented Indentation Testing. Meas. Sci. Technol., 2017, 28, p 025016CrossRef
40.
go back to reference J. Wheeler and J. Michler, Elevated Temperature, Nano-mechanical Testing In Situ in the Scanning Electron Microscope, Rev. Sci. Instrum., 2013, 84, p 045103–045118CrossRef J. Wheeler and J. Michler, Elevated Temperature, Nano-mechanical Testing In Situ in the Scanning Electron Microscope, Rev. Sci. Instrum., 2013, 84, p 045103–045118CrossRef
41.
go back to reference C.A. Schuh, C.E. Packard, and A.C. Lund, Nanoindentation and Contact-Mode Imaging at High Temperatures, J. Mater. Res., 2006, 21, p 725–736CrossRef C.A. Schuh, C.E. Packard, and A.C. Lund, Nanoindentation and Contact-Mode Imaging at High Temperatures, J. Mater. Res., 2006, 21, p 725–736CrossRef
42.
go back to reference C.E. Packard, J.M. Wheeler, J.C. Trenkle, and C.A. Schuh, Nanoindentation: High Temperature, Ref. Modul. Mater. Sci. Mater. Eng., 2016. C.E. Packard, J.M. Wheeler, J.C. Trenkle, and C.A. Schuh, Nanoindentation: High Temperature, Ref. Modul. Mater. Sci. Mater. Eng., 2016.
43.
go back to reference C. Schuh, J. Mason, A. Lund, and A. Hodge, High Temperature Nanoindentation for the Study of Flow Defects, MRS Proceedings, Cambridge Univ Press, 2004. C. Schuh, J. Mason, A. Lund, and A. Hodge, High Temperature Nanoindentation for the Study of Flow Defects, MRS Proceedings, Cambridge Univ Press, 2004.
44.
go back to reference J. Smith, V. Vishnyakov, M. Davies, and B. Beake, Nanoscale Friction Measurements Up to 750 °C, Tribol. Lett., 2013, 49, p 455–463CrossRef J. Smith, V. Vishnyakov, M. Davies, and B. Beake, Nanoscale Friction Measurements Up to 750 °C, Tribol. Lett., 2013, 49, p 455–463CrossRef
45.
go back to reference M. Varga, M. Flasch, and E. Badisch, Introduction of a Novel Tribometer Especially Designed for Scratch, Adhesion and Hardness Investigation Up to 1000 °C, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2017, 231, p 469–478CrossRef M. Varga, M. Flasch, and E. Badisch, Introduction of a Novel Tribometer Especially Designed for Scratch, Adhesion and Hardness Investigation Up to 1000 °C, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2017, 231, p 469–478CrossRef
46.
go back to reference S. Leroch, M. Varga, S. Eder, A. Vernes, M.R. Ripoll, and G. Ganzenmüller, Smooth Particle Hydrodynamics Simulation of Damage Induced by a Spherical Indenter Scratching a Viscoplastic Material, Int. J. Solids Struct., 2016, 81, p 188–202CrossRef S. Leroch, M. Varga, S. Eder, A. Vernes, M.R. Ripoll, and G. Ganzenmüller, Smooth Particle Hydrodynamics Simulation of Damage Induced by a Spherical Indenter Scratching a Viscoplastic Material, Int. J. Solids Struct., 2016, 81, p 188–202CrossRef
47.
go back to reference S. Smith, D. Chetwynd, and D. Bowen, Design and Assessment of Monolithic High Precision Translation Mechanisms, J. Phys. E Sci. Instrum., 1987, 20, p 977CrossRef S. Smith, D. Chetwynd, and D. Bowen, Design and Assessment of Monolithic High Precision Translation Mechanisms, J. Phys. E Sci. Instrum., 1987, 20, p 977CrossRef
48.
go back to reference M. Gee, J. Nunn, A. Muniz-Piniella, and L. Orkney, Micro-tribology Experiments on Engineering Coatings, Wear, 2011, 271, p 2673–2680CrossRef M. Gee, J. Nunn, A. Muniz-Piniella, and L. Orkney, Micro-tribology Experiments on Engineering Coatings, Wear, 2011, 271, p 2673–2680CrossRef
49.
go back to reference A. Gant, J. Nunn, M. Gee, D. Gorman, D. Gohil, and L. Orkney, New Perspectives in Hardmetal Abrasion Simulation, Wear, 2017, 376, p 2–14CrossRef A. Gant, J. Nunn, M. Gee, D. Gorman, D. Gohil, and L. Orkney, New Perspectives in Hardmetal Abrasion Simulation, Wear, 2017, 376, p 2–14CrossRef
50.
go back to reference J. Wheeler and J. Michler, Invited Article: Indenter Materials for High Temperature Nanoindentation, Rev. Sci. Instrum., 2013, 84, p 101301CrossRef J. Wheeler and J. Michler, Invited Article: Indenter Materials for High Temperature Nanoindentation, Rev. Sci. Instrum., 2013, 84, p 101301CrossRef
51.
go back to reference W. Kang, M. Merrill, and J.M. Wheeler, In Situ Thermomechanical Testing Methods for Micro/Nano-scale Materials, Nanoscale, 2017, 9, p 2666CrossRef W. Kang, M. Merrill, and J.M. Wheeler, In Situ Thermomechanical Testing Methods for Micro/Nano-scale Materials, Nanoscale, 2017, 9, p 2666CrossRef
52.
go back to reference S.Z. Chavoshi, S.C. Gallo, H. Dong, and X. Luo, High Temperature Nanoscratching of Single Crystal Silicon Under Reduced Oxygen Condition, Mater. Sci. Eng. A, 2017, 684, p 385–393CrossRef S.Z. Chavoshi, S.C. Gallo, H. Dong, and X. Luo, High Temperature Nanoscratching of Single Crystal Silicon Under Reduced Oxygen Condition, Mater. Sci. Eng. A, 2017, 684, p 385–393CrossRef
53.
go back to reference H. Mohammadi, D. Ravindra, S.K. Kode, and J.A. Patten, Experimental Work on Micro Laser-Assisted Diamond Turning of Silicon (111), J. Manuf. Process., 2015, 19, p 125–128CrossRef H. Mohammadi, D. Ravindra, S.K. Kode, and J.A. Patten, Experimental Work on Micro Laser-Assisted Diamond Turning of Silicon (111), J. Manuf. Process., 2015, 19, p 125–128CrossRef
54.
go back to reference J. Pujante, M. Vilaseca, D. Casellas, and M.D. Riera, High Temperature Scratch Testing of Hard PVD Coatings Deposited on Surface Treated Tool Steel, Surf. Coat. Technol., 2014, 254, p 352–357CrossRef J. Pujante, M. Vilaseca, D. Casellas, and M.D. Riera, High Temperature Scratch Testing of Hard PVD Coatings Deposited on Surface Treated Tool Steel, Surf. Coat. Technol., 2014, 254, p 352–357CrossRef
55.
go back to reference J. Batista, C. Godoy, V. Buono, and A. Matthews, Characterisation of Duplex and Non-duplex (Ti, Al) N and Cr-N PVD Coatings, Mater. Sci. Eng. A, 2002, 336, p 39–51CrossRef J. Batista, C. Godoy, V. Buono, and A. Matthews, Characterisation of Duplex and Non-duplex (Ti, Al) N and Cr-N PVD Coatings, Mater. Sci. Eng. A, 2002, 336, p 39–51CrossRef
56.
go back to reference J. Batista, C. Godoy, G. Pintaúde, A. Sinatora, and A. Matthews, An Approach to Elucidate the Different Response of PVD Coatings in Different Tribological Tests, Surf. Coat. Technol., 2003, 174, p 891–898CrossRef J. Batista, C. Godoy, G. Pintaúde, A. Sinatora, and A. Matthews, An Approach to Elucidate the Different Response of PVD Coatings in Different Tribological Tests, Surf. Coat. Technol., 2003, 174, p 891–898CrossRef
57.
go back to reference D. Allsopp and I. Hutchings, Micro-scale Abrasion and Scratch Response of PVD Coatings at Elevated Temperatures, Wear, 2001, 251, p 1308–1314CrossRef D. Allsopp and I. Hutchings, Micro-scale Abrasion and Scratch Response of PVD Coatings at Elevated Temperatures, Wear, 2001, 251, p 1308–1314CrossRef
58.
go back to reference G. Fox-Rabinovich, J. Endrino, B. Beake, A. Kovalev, S. Veldhuis, L. Ning, F. Fontaine, and A. Gray, Impact of Annealing on Microstructure, Properties and Cutting Performance of an AlTiN Coating, Surf. Coat. Technol., 2006, 201, p 3524–3529CrossRef G. Fox-Rabinovich, J. Endrino, B. Beake, A. Kovalev, S. Veldhuis, L. Ning, F. Fontaine, and A. Gray, Impact of Annealing on Microstructure, Properties and Cutting Performance of an AlTiN Coating, Surf. Coat. Technol., 2006, 201, p 3524–3529CrossRef
59.
go back to reference G. Fox-Rabinovich, B. Beake, J. Endrino, S. Veldhuis, R. Parkinson, L. Shuster, and M. Migranov, Effect of Mechanical Properties Measured at Room and Elevated Temperatures on the Wear Resistance of Cutting Tools with TiAlN and AlCrN Coatings, Surf. Coat. Technol., 2006, 200, p 5738–5742CrossRef G. Fox-Rabinovich, B. Beake, J. Endrino, S. Veldhuis, R. Parkinson, L. Shuster, and M. Migranov, Effect of Mechanical Properties Measured at Room and Elevated Temperatures on the Wear Resistance of Cutting Tools with TiAlN and AlCrN Coatings, Surf. Coat. Technol., 2006, 200, p 5738–5742CrossRef
60.
go back to reference W. Tillmann, D. Kokalj, D. Stangier, M. Paulus, C. Sternemann, and M. Tolan, Investigation on the Oxidation Behavior of AlCrVxN Thin Films by Means of Synchrotron Radiation and Influence on the High Temperature Friction, Appl. Surf. Sci., 2018, 427, p 511–521CrossRef W. Tillmann, D. Kokalj, D. Stangier, M. Paulus, C. Sternemann, and M. Tolan, Investigation on the Oxidation Behavior of AlCrVxN Thin Films by Means of Synchrotron Radiation and Influence on the High Temperature Friction, Appl. Surf. Sci., 2018, 427, p 511–521CrossRef
61.
go back to reference W. Tillmann, D. Kokalj, D. Stangier, M. Paulus, C. Sternemann, and M. Tolan, Investigation of the Influence of the Vanadium Content on the High Temperature Tribo-Mechanical Properties of DC Magnetron Sputtered AlCrVN Thin Films, Surf. Coat. Technol., 2017, 328, p 172–181CrossRef W. Tillmann, D. Kokalj, D. Stangier, M. Paulus, C. Sternemann, and M. Tolan, Investigation of the Influence of the Vanadium Content on the High Temperature Tribo-Mechanical Properties of DC Magnetron Sputtered AlCrVN Thin Films, Surf. Coat. Technol., 2017, 328, p 172–181CrossRef
62.
go back to reference M. Varga, S. Leroch, H. Rojacz, and M.R. Ripoll, Study of Wear Mechanisms at High Temperature Scratch Testing, Wear, 2017, 388, p 112CrossRef M. Varga, S. Leroch, H. Rojacz, and M.R. Ripoll, Study of Wear Mechanisms at High Temperature Scratch Testing, Wear, 2017, 388, p 112CrossRef
63.
go back to reference B. He, G. Ghosh, Y.-W. Chung, and Q. Wang, Effect of Melting and Microstructure on the Microscale Friction of Silver-Bismuth Alloys, Tribol. Lett., 2010, 38, p 275–282CrossRef B. He, G. Ghosh, Y.-W. Chung, and Q. Wang, Effect of Melting and Microstructure on the Microscale Friction of Silver-Bismuth Alloys, Tribol. Lett., 2010, 38, p 275–282CrossRef
64.
go back to reference H. Rojacz, G. Mozdzen, F. Weigel, and M. Varga, Microstructural Changes and Strain Hardening Effects in Abrasive Contacts at Different Relative Velocities and Temperatures, Mater. Charact., 2016, 118, p 370–381CrossRef H. Rojacz, G. Mozdzen, F. Weigel, and M. Varga, Microstructural Changes and Strain Hardening Effects in Abrasive Contacts at Different Relative Velocities and Temperatures, Mater. Charact., 2016, 118, p 370–381CrossRef
65.
go back to reference J. Williams, Analytical Models of Scratch Hardness, Tribol. Int., 1996, 29, p 675–694CrossRef J. Williams, Analytical Models of Scratch Hardness, Tribol. Int., 1996, 29, p 675–694CrossRef
66.
go back to reference S. Graça, R. Colaço, and R. Vilar, Micro-to-nano Indentation and Scratch Hardness in the Ni-Co System: Depth Dependence and Implications for Tribological Behavior, Tribol. Lett., 2008, 31, p 177CrossRef S. Graça, R. Colaço, and R. Vilar, Micro-to-nano Indentation and Scratch Hardness in the Ni-Co System: Depth Dependence and Implications for Tribological Behavior, Tribol. Lett., 2008, 31, p 177CrossRef
67.
go back to reference V. Domnich, Y. Aratyn, W.M. Kriven, and Y. Gogotsi, Temperature Dependence of Silicon Hardness: Experimental Evidence of Phase Transformations, Rev. Adv. Mater. Sci., 2008, 17, p 33–41 V. Domnich, Y. Aratyn, W.M. Kriven, and Y. Gogotsi, Temperature Dependence of Silicon Hardness: Experimental Evidence of Phase Transformations, Rev. Adv. Mater. Sci., 2008, 17, p 33–41
68.
go back to reference S. Ruffell, J. Bradby, and J.S. Williams, Annealing Kinetics of Nanoindentation-Induced Polycrystalline High Pressure Phases in Crystalline Silicon, Appl. Phys. Lett., 2007, 90, p 131901–131904CrossRef S. Ruffell, J. Bradby, and J.S. Williams, Annealing Kinetics of Nanoindentation-Induced Polycrystalline High Pressure Phases in Crystalline Silicon, Appl. Phys. Lett., 2007, 90, p 131901–131904CrossRef
69.
go back to reference Z. Zeng, Q. Zeng, W.L. Mao, and S. Qu, Phase Transitions in Metastable Phases of Silicon, J. Appl. Phys., 2014, 115, p 103514–103520CrossRef Z. Zeng, Q. Zeng, W.L. Mao, and S. Qu, Phase Transitions in Metastable Phases of Silicon, J. Appl. Phys., 2014, 115, p 103514–103520CrossRef
70.
go back to reference Y.B. Gerbig, C. Michaels, J.E. Bradby, B. Haberl, and R.F. Cook, In Situ Spectroscopic Study of the Plastic Deformation of Amorphous Silicon Under Nonhydrostatic Conditions Induced by Indentation, Phys. Rev. B, 2015, 92, p 214110CrossRef Y.B. Gerbig, C. Michaels, J.E. Bradby, B. Haberl, and R.F. Cook, In Situ Spectroscopic Study of the Plastic Deformation of Amorphous Silicon Under Nonhydrostatic Conditions Induced by Indentation, Phys. Rev. B, 2015, 92, p 214110CrossRef
71.
go back to reference Y.B. Gerbig, C.A. Michaels, and R.F. Cook, In Situ Observation of the Spatial Distribution of Crystalline Phases During Pressure-Induced Transformations of Indented Silicon Thin Films, J. Mater. Res., 2015, 30, p 390–406CrossRef Y.B. Gerbig, C.A. Michaels, and R.F. Cook, In Situ Observation of the Spatial Distribution of Crystalline Phases During Pressure-Induced Transformations of Indented Silicon Thin Films, J. Mater. Res., 2015, 30, p 390–406CrossRef
72.
go back to reference Y. Gerbig, C. Michaels, A. Forster, J. Hettenhouser, W. Byrd, D. Morris, and R. Cook, Indentation Device for In Situ Raman Spectroscopic and Optical Studies, Rev. Sci. Instrum., 2012, 83, p 125106CrossRef Y. Gerbig, C. Michaels, A. Forster, J. Hettenhouser, W. Byrd, D. Morris, and R. Cook, Indentation Device for In Situ Raman Spectroscopic and Optical Studies, Rev. Sci. Instrum., 2012, 83, p 125106CrossRef
73.
go back to reference Y.B. Gerbig, C.A. Michaels, and R.F. Cook, In Situ Observations of Berkovich Indentation Induced Phase Transitions in Crystalline Silicon Films, Scripta Mater., 2016, 120, p 19–22CrossRef Y.B. Gerbig, C.A. Michaels, and R.F. Cook, In Situ Observations of Berkovich Indentation Induced Phase Transitions in Crystalline Silicon Films, Scripta Mater., 2016, 120, p 19–22CrossRef
74.
go back to reference Y. Gerbig, C. Michaels, A. Forster, and R. Cook, In Situ Observation of the Indentation-Induced Phase Transformation of Silicon Thin Films, Phys. Rev. B, 2012, 85, p 104102CrossRef Y. Gerbig, C. Michaels, A. Forster, and R. Cook, In Situ Observation of the Indentation-Induced Phase Transformation of Silicon Thin Films, Phys. Rev. B, 2012, 85, p 104102CrossRef
75.
go back to reference P. Manimunda, E. Hintsala, S. Asif, and M.K. Mishra, Mechanical Anisotropy and Pressure Induced Structural Changes in Piroxicam Crystals Probed by In Situ Indentation and Raman Spectroscopy, JOM, 2017, 69, p 57–63CrossRef P. Manimunda, E. Hintsala, S. Asif, and M.K. Mishra, Mechanical Anisotropy and Pressure Induced Structural Changes in Piroxicam Crystals Probed by In Situ Indentation and Raman Spectroscopy, JOM, 2017, 69, p 57–63CrossRef
76.
go back to reference J. Wheeler, C. Niederberger, C. Tessarek, S. Christiansen, and J. Michler, Extraction of Plasticity Parameters of GaN with High Temperature, In Situ Micro-Compression, Int. J. Plast., 2013, 40, p 140–151CrossRef J. Wheeler, C. Niederberger, C. Tessarek, S. Christiansen, and J. Michler, Extraction of Plasticity Parameters of GaN with High Temperature, In Situ Micro-Compression, Int. J. Plast., 2013, 40, p 140–151CrossRef
77.
go back to reference J. Wheeler, R. Raghavan, and J. Michler, In Situ SEM Indentation of a Zr-Based Bulk Metallic Glass at Elevated Temperatures, Mater. Sci. Eng. A, 2011, 528, p 8750–8756CrossRef J. Wheeler, R. Raghavan, and J. Michler, In Situ SEM Indentation of a Zr-Based Bulk Metallic Glass at Elevated Temperatures, Mater. Sci. Eng. A, 2011, 528, p 8750–8756CrossRef
78.
go back to reference B. Bhushan, Nanotribology and Nanomechanics, Wear, 2005, 259, p 1507–1531CrossRef B. Bhushan, Nanotribology and Nanomechanics, Wear, 2005, 259, p 1507–1531CrossRef
79.
go back to reference C. Cheung and W. Lee, Characterisation of Nanosurface Generation in Single-Point Diamond Turning, Int. J. Mach. Tools Manuf., 2001, 41, p 851–875CrossRef C. Cheung and W. Lee, Characterisation of Nanosurface Generation in Single-Point Diamond Turning, Int. J. Mach. Tools Manuf., 2001, 41, p 851–875CrossRef
80.
go back to reference T.G. Bifano, T. Dow, and R. Scattergood, Ductile-Regime Grinding: A New Technology for Machining Brittle Materials, J. Eng. Ind., 1991, 113, p 184–189CrossRef T.G. Bifano, T. Dow, and R. Scattergood, Ductile-Regime Grinding: A New Technology for Machining Brittle Materials, J. Eng. Ind., 1991, 113, p 184–189CrossRef
81.
go back to reference P.N. Blake and R.O. Scattergood, Ductile-Regime Machining of Germanium and Silicon, J. Am. Ceram. Soc., 1990, 73, p 949–957CrossRef P.N. Blake and R.O. Scattergood, Ductile-Regime Machining of Germanium and Silicon, J. Am. Ceram. Soc., 1990, 73, p 949–957CrossRef
82.
go back to reference J. Patten, W. Gao, and K. Yasuto, Ductile Regime Nanomachining of Single-Crystal Silicon Carbide, J. Manuf. Sci. Eng., 2005, 127, p 522–532CrossRef J. Patten, W. Gao, and K. Yasuto, Ductile Regime Nanomachining of Single-Crystal Silicon Carbide, J. Manuf. Sci. Eng., 2005, 127, p 522–532CrossRef
83.
go back to reference S.Z. Chavoshi and X. Luo, Hybrid Micro-machining Processes: A Review, Precis. Eng., 2015, 41, p 1–23CrossRef S.Z. Chavoshi and X. Luo, Hybrid Micro-machining Processes: A Review, Precis. Eng., 2015, 41, p 1–23CrossRef
84.
go back to reference S.Z. Chavoshi, S. Goel, and P. Morantz, Current Trends and Future of Sequential Micro-machining Processes on a Single Machine Tool, Mater. Des., 2017, 127, p 37–53CrossRef S.Z. Chavoshi, S. Goel, and P. Morantz, Current Trends and Future of Sequential Micro-machining Processes on a Single Machine Tool, Mater. Des., 2017, 127, p 37–53CrossRef
85.
go back to reference D. Ravindra, Ductile Mode Material Removal of Ceramics and Semiconductors, Department of Mechanical and Aeronautical Engineering, Western Michigan University, Michigan, 2011, p 312. D. Ravindra, Ductile Mode Material Removal of Ceramics and Semiconductors, Department of Mechanical and Aeronautical Engineering, Western Michigan University, Michigan, 2011, p 312.
86.
go back to reference D. Ravindra, M.K. Ghantasala, and J. Patten, Ductile Mode Material Removal and High-Pressure Phase Transformation in Silicon During Micro-laser Assisted Machining, Precis. Eng., 2012, 36, p 364–367CrossRef D. Ravindra, M.K. Ghantasala, and J. Patten, Ductile Mode Material Removal and High-Pressure Phase Transformation in Silicon During Micro-laser Assisted Machining, Precis. Eng., 2012, 36, p 364–367CrossRef
87.
go back to reference D. Ravindra and J.A. Patten, Chapter 4: Ductile Regime Material Removal of Silicon Carbide(SiC), Silicon Carbide: New Materials, Production Methods and Application, S.H. Vanger, Ed., Nova Publishers, Trivandrum, 2011, p 141–167. D. Ravindra and J.A. Patten, Chapter 4: Ductile Regime Material Removal of Silicon Carbide(SiC), Silicon Carbide: New Materials, Production Methods and Application, S.H. Vanger, Ed., Nova Publishers, Trivandrum, 2011, p 141–167.
88.
go back to reference A.R. Shayan, H.B. Poyraz, D. Ravindra, M. Ghantasala, and J.A. Patten. Force Analysis, Mechanical Energy and Laser Heating Evaluation of Scratch Tests on Silicon Carbide (4H-SiC) in Micro-Laser Assisted Machining (µ-LAM) Process, ASME 2009 International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2009. A.R. Shayan, H.B. Poyraz, D. Ravindra, M. Ghantasala, and J.A. Patten. Force Analysis, Mechanical Energy and Laser Heating Evaluation of Scratch Tests on Silicon Carbide (4H-SiC) in Micro-Laser Assisted Machining (µ-LAM) Process, ASME 2009 International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2009.
89.
go back to reference H. Mohammadi and J.A. Patten, Effect of Thermal Softening on Anisotropy and Ductile Mode Cutting of Sapphire Using Micro-laser Assisted Machining, J. Micro Nano Manuf., 2017, 5, p 011007CrossRef H. Mohammadi and J.A. Patten, Effect of Thermal Softening on Anisotropy and Ductile Mode Cutting of Sapphire Using Micro-laser Assisted Machining, J. Micro Nano Manuf., 2017, 5, p 011007CrossRef
90.
go back to reference B. Beake, J. Endrino, C. Kimpton, G. Fox-Rabinovich, and S. Veldhuis, Elevated Temperature Repetitive Micro-scratch Testing of AlCrN, TiAlN and AlTiN PVD Coatings, Int. J. Refract. Metal. Hard Mater., 2017, 69, p 215–226CrossRef B. Beake, J. Endrino, C. Kimpton, G. Fox-Rabinovich, and S. Veldhuis, Elevated Temperature Repetitive Micro-scratch Testing of AlCrN, TiAlN and AlTiN PVD Coatings, Int. J. Refract. Metal. Hard Mater., 2017, 69, p 215–226CrossRef
91.
go back to reference I. Altfeder and J. Krim, Temperature Dependence of Nanoscale Friction for Fe on YBCO, J. Appl. Phys., 2012, 111, p 094916CrossRef I. Altfeder and J. Krim, Temperature Dependence of Nanoscale Friction for Fe on YBCO, J. Appl. Phys., 2012, 111, p 094916CrossRef
92.
go back to reference C. Dunckle, I. Altfeder, A. Voevodin, J. Jones, J. Krim, and P. Taborek, Temperature Dependence of Single-Asperity Friction for a Diamond on Diamondlike Carbon Interface, J. Appl. Phys., 2010, 107, p 114903CrossRef C. Dunckle, I. Altfeder, A. Voevodin, J. Jones, J. Krim, and P. Taborek, Temperature Dependence of Single-Asperity Friction for a Diamond on Diamondlike Carbon Interface, J. Appl. Phys., 2010, 107, p 114903CrossRef
93.
go back to reference F.P. Bowden and D. Tabor, The Friction and Lubrication of Solids, Vol 1, Oxford University Press, Oxford, 2001 F.P. Bowden and D. Tabor, The Friction and Lubrication of Solids, Vol 1, Oxford University Press, Oxford, 2001
94.
go back to reference H. Nili, K. Kalantar-zadeh, M. Bhaskaran, and S. Sriram, In Situ Nanoindentation: Probing Nanoscale Multifunctionality, Prog. Mater Sci., 2013, 58, p 1–29CrossRef H. Nili, K. Kalantar-zadeh, M. Bhaskaran, and S. Sriram, In Situ Nanoindentation: Probing Nanoscale Multifunctionality, Prog. Mater Sci., 2013, 58, p 1–29CrossRef
95.
go back to reference N. Browning, M. Bonds, G. Campbell, J. Evans, T. LaGrange, K. Jungjohann, D. Masiel, J. McKeown, S. Mehraeen, and B. Reed, Recent Developments in Dynamic Transmission Electron Microscopy, Curr. Opin. Solid State Mater. Sci., 2012, 16, p 23–30CrossRef N. Browning, M. Bonds, G. Campbell, J. Evans, T. LaGrange, K. Jungjohann, D. Masiel, J. McKeown, S. Mehraeen, and B. Reed, Recent Developments in Dynamic Transmission Electron Microscopy, Curr. Opin. Solid State Mater. Sci., 2012, 16, p 23–30CrossRef
96.
go back to reference A. Feist, N. Bach, N.R. da Silva, T. Danz, M. Möller, K.E. Priebe, T. Domröse, J.G. Gatzmann, S. Rost, and J. Schauss, Ultrafast Transmission Electron Microscopy Using a Laser-Driven Field Emitter: Femtosecond Resolution with a High Coherence Electron Beam, Ultramicroscopy, 2017, 176, p 63–73CrossRef A. Feist, N. Bach, N.R. da Silva, T. Danz, M. Möller, K.E. Priebe, T. Domröse, J.G. Gatzmann, S. Rost, and J. Schauss, Ultrafast Transmission Electron Microscopy Using a Laser-Driven Field Emitter: Femtosecond Resolution with a High Coherence Electron Beam, Ultramicroscopy, 2017, 176, p 63–73CrossRef
97.
go back to reference M. Dupraz, G. Beutier, T. Cornelius, G. Parry, Z. Ren, S. Labat, M.-I. Richard, G. Chahine, O. Kovalenko, and M. De Boissieu, 3D Imaging of a Dislocation Loop at the Onset of Plasticity in an Indented Nanocrystal, Nano Lett., 2017, 17, p 6696CrossRef M. Dupraz, G. Beutier, T. Cornelius, G. Parry, Z. Ren, S. Labat, M.-I. Richard, G. Chahine, O. Kovalenko, and M. De Boissieu, 3D Imaging of a Dislocation Loop at the Onset of Plasticity in an Indented Nanocrystal, Nano Lett., 2017, 17, p 6696CrossRef
98.
go back to reference P.L. Stiles, J.A. Dieringer, N.C. Shah, and R.P. Van Duyne, Surface-Enhanced Raman Spectroscopy, Annu. Rev. Anal. Chem., 2008, 1, p 601–626CrossRef P.L. Stiles, J.A. Dieringer, N.C. Shah, and R.P. Van Duyne, Surface-Enhanced Raman Spectroscopy, Annu. Rev. Anal. Chem., 2008, 1, p 601–626CrossRef
99.
go back to reference J. Bradby, J. Williams, and M.V. Swain, In Situ Electrical Characterization of Phase Transformations in Si During Indentation, Phys. Rev. B, 2003, 67, p 085205CrossRef J. Bradby, J. Williams, and M.V. Swain, In Situ Electrical Characterization of Phase Transformations in Si During Indentation, Phys. Rev. B, 2003, 67, p 085205CrossRef
100.
go back to reference N. Fujisawa, S. Ruffell, J. Bradby, J. Williams, B. Haberl, and O. Warren, Understanding Pressure-Induced Phase-Transformation Behavior in Silicon Through In Situ Electrical Probing Under Cyclic Loading Conditions, AIP, 2009, 105, p 106111 N. Fujisawa, S. Ruffell, J. Bradby, J. Williams, B. Haberl, and O. Warren, Understanding Pressure-Induced Phase-Transformation Behavior in Silicon Through In Situ Electrical Probing Under Cyclic Loading Conditions, AIP, 2009, 105, p 106111
101.
go back to reference S. Ruffell, J. Bradby, J. Williams, and O. Warren, An In Situ Electrical Measurement Technique Via a Conducting Diamond Tip For Nanoindentation in Silicon, J. Mater. Res., 2007, 22, p 578–586CrossRef S. Ruffell, J. Bradby, J. Williams, and O. Warren, An In Situ Electrical Measurement Technique Via a Conducting Diamond Tip For Nanoindentation in Silicon, J. Mater. Res., 2007, 22, p 578–586CrossRef
102.
go back to reference S. Ruffell, J. Bradby, N. Fujisawa, and J. Williams, Identification of Nanoindentation-Induced Phase Changes in Silicon by In Situ Electrical Characterization, J. Appl. Phys., 2007, 101, p 083531CrossRef S. Ruffell, J. Bradby, N. Fujisawa, and J. Williams, Identification of Nanoindentation-Induced Phase Changes in Silicon by In Situ Electrical Characterization, J. Appl. Phys., 2007, 101, p 083531CrossRef
103.
go back to reference J.-C. Zhao, The Diffusion-Multiple Approach To Designing Alloys, Annu. Rev. Mater. Res., 2005, 35, p 51–73CrossRef J.-C. Zhao, The Diffusion-Multiple Approach To Designing Alloys, Annu. Rev. Mater. Res., 2005, 35, p 51–73CrossRef
104.
go back to reference A. Sawant and S. Tin, High Temperature Nanoindentation of a Re-Bearing Single Crystal Ni-Base Superalloy, Scripta Mater., 2008, 58, p 275–278CrossRef A. Sawant and S. Tin, High Temperature Nanoindentation of a Re-Bearing Single Crystal Ni-Base Superalloy, Scripta Mater., 2008, 58, p 275–278CrossRef
105.
go back to reference T. Csanádi, M. Novák, A. Naughton-Duszová, and J. Dusza, Anisotropic Nanoscratch Resistance of WC Grains in WC-Co Composite, Int. J. Refract. Metal. Hard Mater., 2015, 51, p 188–191CrossRef T. Csanádi, M. Novák, A. Naughton-Duszová, and J. Dusza, Anisotropic Nanoscratch Resistance of WC Grains in WC-Co Composite, Int. J. Refract. Metal. Hard Mater., 2015, 51, p 188–191CrossRef
106.
go back to reference M. Gee, K. Mingard, J. Nunn, B. Roebuck, and A. Gant, In Situ Scratch Testing and Abrasion Simulation of WC/Co, Int. J. Refract. Metal. Hard Mater., 2017, 62, p 192–201CrossRef M. Gee, K. Mingard, J. Nunn, B. Roebuck, and A. Gant, In Situ Scratch Testing and Abrasion Simulation of WC/Co, Int. J. Refract. Metal. Hard Mater., 2017, 62, p 192–201CrossRef
107.
go back to reference L. Joly-Pottuz, E. Bucholz, N. Matsumoto, S. Phillpot, S. Sinnott, N. Ohmae, and J. Martin, Friction Properties of Carbon Nano-onions from Experiment and Computer Simulations, Tribol. Lett., 2010, 37, p 75CrossRef L. Joly-Pottuz, E. Bucholz, N. Matsumoto, S. Phillpot, S. Sinnott, N. Ohmae, and J. Martin, Friction Properties of Carbon Nano-onions from Experiment and Computer Simulations, Tribol. Lett., 2010, 37, p 75CrossRef
108.
go back to reference A. Samanta, H. Chakraborty, M. Bhattacharya, J. Ghosh, M. Sreemany, S. Bysakh, R. Rane, A. Joseph, G. Jhala, and S. Mukherjee, Nanotribological Response of a Plasma Nitrided Bio-Steel, J. Mech. Behav. Biomed. Mater., 2017, 65, p 584–599CrossRef A. Samanta, H. Chakraborty, M. Bhattacharya, J. Ghosh, M. Sreemany, S. Bysakh, R. Rane, A. Joseph, G. Jhala, and S. Mukherjee, Nanotribological Response of a Plasma Nitrided Bio-Steel, J. Mech. Behav. Biomed. Mater., 2017, 65, p 584–599CrossRef
109.
go back to reference A. Samanta, M. Bhattacharya, I. Ratha, H. Chakraborty, S. Datta, J. Ghosh, S. Bysakh, M. Sreemany, R. Rane, and A. Joseph, Nano-and Micro-Tribological Behaviours of Plasma Nitrided Ti6Al4V Alloys, J. Mech. Behav. Biomed. Mater., 2018, 77, p 267–294CrossRef A. Samanta, M. Bhattacharya, I. Ratha, H. Chakraborty, S. Datta, J. Ghosh, S. Bysakh, M. Sreemany, R. Rane, and A. Joseph, Nano-and Micro-Tribological Behaviours of Plasma Nitrided Ti6Al4V Alloys, J. Mech. Behav. Biomed. Mater., 2018, 77, p 267–294CrossRef
110.
go back to reference S. Brinckmann and G. Dehm, Nanotribology in Austenite: Plastic Plowing and Crack Formation, Wear, 2015, 338, p 436–440CrossRef S. Brinckmann and G. Dehm, Nanotribology in Austenite: Plastic Plowing and Crack Formation, Wear, 2015, 338, p 436–440CrossRef
111.
go back to reference B. Shiari and R.E. Miller, Multiscale Modeling of Ductile Crystals at the Nanoscale Subjected to Cyclic Indentation, Acta Mater., 2008, 56, p 2799–2809CrossRef B. Shiari and R.E. Miller, Multiscale Modeling of Ductile Crystals at the Nanoscale Subjected to Cyclic Indentation, Acta Mater., 2008, 56, p 2799–2809CrossRef
Metadata
Title
A Review on Micro- and Nanoscratching/Tribology at High Temperatures: Instrumentation and Experimentation
Authors
Saeed Zare Chavoshi
Shuozhi Xu
Publication date
05-07-2018
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 8/2018
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3493-5

Other articles of this Issue 8/2018

Journal of Materials Engineering and Performance 8/2018 Go to the issue

Premium Partners