Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2020

26.05.2020 | ORIGINAL ARTICLE

3D human arm reaching movement planning with principal patterns in successive phases

verfasst von: Sedigheh Dehghani, Fariba Bahrami

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There are observations indicating that the central nervous system (CNS) decomposes a movement into several successive sub-movements as an effective strategy to control the motor task. In this study, we propose an algorithm in which, Arm Reaching Movement (ARM) in 3D space is decomposed into several successive phases using zero joint angle jerk features of the arm kinematic data. The presented decomposition algorithm for 3D motions is, in fact, an improved and generalized version of the decomposition method proposed earlier by Emadi and Bahrami in 2012 for 2D movements. They assumed that the motion is coordinated by minimum jerk characteristics in joint angles space in each phase. However, at the first glance, it seems that in 3D ARM joint angles are not coordinated based on the minimum jerk features. Therefore, we defined a resultant variable in the joint space and showed that one can use its jerk properties together with those of the elbow joint in movement decomposition. We showed that phase borders determined with the proposed algorithm in 3D ARM, are defined with jerk characteristics of ARM’s performance variable. We observed the same results in the Sit-to-Stand (STS) movement, too. Thus, based on our results, we suggested that any 3D motion can be decomposed into several phases, such that in each phase a set of principal patterns (PPs) extracted by Principal Component Analysis (PCA) method are linearly recruited to regenerate angle trajectories of each joint. Our results also suggest that the CNS, as the primary policy, may simplify the control of the ARMs by reducing the dimension of the control space. This dimension reduction might be accomplished by decomposing the movement into successive phases in which the movement satisfies the minimum joint angle jerk constraint. Then, in each phase, a set of PPs are recruited in the joint space to regenerate angle trajectory of each joint. Then, the dimension of the control space will be the number of the recruitment coefficients.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bahrami, F., Moraes, R., & Patla, A. (2003). Control pattern of a combined task. In Proceedings of the ISPGR, Sydney, Australia. Bahrami, F., Moraes, R., & Patla, A. (2003). Control pattern of a combined task. In Proceedings of the ISPGR, Sydney, Australia.
Zurück zum Zitat Bizzi, E., Mussa-Ivaldi, F. A., & Giszter, S. (1991). Computations underlying the production of movement: a biological persectiv. Science, 253(July), 287–291.CrossRef Bizzi, E., Mussa-Ivaldi, F. A., & Giszter, S. (1991). Computations underlying the production of movement: a biological persectiv. Science, 253(July), 287–291.CrossRef
Zurück zum Zitat Emadi, M., & Bahrami, F. (2012). COMAP : a new computational interpretation of human movement planning level based on coordinated minimum angle jerk policies and six universal movement elements. Human Movement Science, 31, 1037–1055.CrossRef Emadi, M., & Bahrami, F. (2012). COMAP : a new computational interpretation of human movement planning level based on coordinated minimum angle jerk policies and six universal movement elements. Human Movement Science, 31, 1037–1055.CrossRef
Zurück zum Zitat Eriksson, A. (2008). Optimization in target movement simulations. Computer Methods in Applied Mechanics and Engineering, 197, 4207–4215.CrossRef Eriksson, A. (2008). Optimization in target movement simulations. Computer Methods in Applied Mechanics and Engineering, 197, 4207–4215.CrossRef
Zurück zum Zitat Galli, M., Cimolin, V., Crivellini, M., & Campanini, I. (2008). Quantitative analysis of sit to stand movement: experimental set-up definition and application to healthy and hemiplegic adults. Gait & Posture, 28(1), 80–85.CrossRef Galli, M., Cimolin, V., Crivellini, M., & Campanini, I. (2008). Quantitative analysis of sit to stand movement: experimental set-up definition and application to healthy and hemiplegic adults. Gait & Posture, 28(1), 80–85.CrossRef
Zurück zum Zitat Kobayashi, Y., Kawano, K., Takemura, A., Inoue, Y., Kitama, T., Gomi, H., & Kawato, M. (1998). Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys II. Complex spikes. Journal of Neurophysiology, 80(2), 832–848.CrossRef Kobayashi, Y., Kawano, K., Takemura, A., Inoue, Y., Kitama, T., Gomi, H., & Kawato, M. (1998). Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys II. Complex spikes. Journal of Neurophysiology, 80(2), 832–848.CrossRef
Zurück zum Zitat Momtahan, M., Dehghani, S., Bahrami, F., Moradi, H., & Najafi, F. (2015). Design of a planar parallel robot to investigate human arm point to point reaching movement. In 22nd Iranian Conference on Biomedical Engineering (pp. 227–232). Momtahan, M., Dehghani, S., Bahrami, F., Moradi, H., & Najafi, F. (2015). Design of a planar parallel robot to investigate human arm point to point reaching movement. In 22nd Iranian Conference on Biomedical Engineering (pp. 227–232).
Zurück zum Zitat Nakano, E., Imamizu, H., Osu, R., Uno, Y., Gomi, H., Yoshioka, T., & Kawato, M. (1999). Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. Journal of Neurophysiology, 81(5), 2140–2155.CrossRef Nakano, E., Imamizu, H., Osu, R., Uno, Y., Gomi, H., Yoshioka, T., & Kawato, M. (1999). Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. Journal of Neurophysiology, 81(5), 2140–2155.CrossRef
Zurück zum Zitat Riley, P. O., Schenkman, M. L., Mann, R. W., & Hodge, W. A. (1991). Mechanics of a constrained chair-rise. Journal of Biomechanics, 24(1), 77–85.CrossRef Riley, P. O., Schenkman, M. L., Mann, R. W., & Hodge, W. A. (1991). Mechanics of a constrained chair-rise. Journal of Biomechanics, 24(1), 77–85.CrossRef
Zurück zum Zitat Scholz, J. P., & Schöner, G. (1999). The uncontrolled manifold concept : identifying control variables for a functional task. Experimental Brain Research, 126, 289–306.CrossRef Scholz, J. P., & Schöner, G. (1999). The uncontrolled manifold concept : identifying control variables for a functional task. Experimental Brain Research, 126, 289–306.CrossRef
Zurück zum Zitat Uno, Y., Kawato, M., & Suzuki, R. (1989). Formation and control of optimal trajectory in human multijoint arm movement. minimum torque-change model. Biological Cybernetics, 61(2), 89–101.CrossRef Uno, Y., Kawato, M., & Suzuki, R. (1989). Formation and control of optimal trajectory in human multijoint arm movement. minimum torque-change model. Biological Cybernetics, 61(2), 89–101.CrossRef
Metadaten
Titel
3D human arm reaching movement planning with principal patterns in successive phases
verfasst von
Sedigheh Dehghani
Fariba Bahrami
Publikationsdatum
26.05.2020
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2020
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-020-00749-2

Weitere Artikel der Ausgabe 3/2020

Journal of Computational Neuroscience 3/2020 Zur Ausgabe