Skip to main content
Erschienen in: Journal of Materials Science 18/2018

19.06.2018 | Chemical routes to materials

A carbon nanotube/carbonaceous foam composite: simple preparation and potential application

verfasst von: Hong Lei, Qi Cheng

Erschienen in: Journal of Materials Science | Ausgabe 18/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The combination of carbonaceous foams (CFs) and carbon nanotubes (CNTs) is considered a viable strategy to take advantage of the merits of these two materials. Most of the reported CF–CNT composite embedded the CNTs in the framework of CFs, which may conceal some unique properties of the CNTs. In the present work, CNTs were successfully deposited on the ultra-thin cell walls of a starch-derived CF via a simple flame strategy. Two key factors (the concentration of Ni catalyst and the time of flame treatment) affecting the preparation of the CF–CNT composite were investigated. The CF–CNT composite prepared under optimized conditions has a much larger specific surface area (128.7 m2 g−1) than the CF substrate (1.3 m2 g−1). We demonstrated the potential of the CF–CNT composite for strain sensing. The sensors assembled using the CF–CNT composite as key material were sensitive to compression, bending and stretching.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Liu C, Cheng H (2013) Carbon nanotubes: controlled growth and application. Mater Today 16:19–28CrossRef Liu C, Cheng H (2013) Carbon nanotubes: controlled growth and application. Mater Today 16:19–28CrossRef
2.
Zurück zum Zitat De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539CrossRef De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539CrossRef
3.
Zurück zum Zitat Yan X, Gu J, Zheng G, Guo J, Galaska AM, Yu J, Khan MA, Sun L, Young DP, Zhang Q, Wei S, Guo Z (2016) Lowly loaded carbon nanotubes induced high electrical conductivity and giant magnetoresistance in ethylene/1-octene copolymers. Polymer 103:315–327CrossRef Yan X, Gu J, Zheng G, Guo J, Galaska AM, Yu J, Khan MA, Sun L, Young DP, Zhang Q, Wei S, Guo Z (2016) Lowly loaded carbon nanotubes induced high electrical conductivity and giant magnetoresistance in ethylene/1-octene copolymers. Polymer 103:315–327CrossRef
4.
Zurück zum Zitat Tang Y, Kong J, Gu J, Liang G (2009) Reinforced cyanate ester resins with carbon nanotubes: surface modification, reaction activity and mechanical properties analyses. Polym-Plast Technol 48:359–366CrossRef Tang Y, Kong J, Gu J, Liang G (2009) Reinforced cyanate ester resins with carbon nanotubes: surface modification, reaction activity and mechanical properties analyses. Polym-Plast Technol 48:359–366CrossRef
5.
Zurück zum Zitat Zuruzi AS, Haffiz TM, Affidah D, Amirul A, Norfatriah A, Nurmawati MH (2017) Towards wearable pressure sensors using multiwall carbon nanotube/polydimethylsiloxane nanocomposite foams. Mater Des 132:449–458CrossRef Zuruzi AS, Haffiz TM, Affidah D, Amirul A, Norfatriah A, Nurmawati MH (2017) Towards wearable pressure sensors using multiwall carbon nanotube/polydimethylsiloxane nanocomposite foams. Mater Des 132:449–458CrossRef
6.
Zurück zum Zitat Wei X, Cao X, Wang Y, Zheng G, Dai K, Liu C, Shen C (2017) Conductive herringbone structure carbon nanotube/thermoplastic polyurethane porous foam tuned by epoxy for high performance flexible piezoresistive sensor. Compos Sci Technol 149:166–177CrossRef Wei X, Cao X, Wang Y, Zheng G, Dai K, Liu C, Shen C (2017) Conductive herringbone structure carbon nanotube/thermoplastic polyurethane porous foam tuned by epoxy for high performance flexible piezoresistive sensor. Compos Sci Technol 149:166–177CrossRef
7.
Zurück zum Zitat Xiao N, Zhou Y, Ling Z, Zhao Z, Qiu J (2013) Carbon foams made of in situ produced carbon nanocapsules and the use as a catalyst for oxidative dehydrogenation of ethylbenzene. Carbon 60:514–522CrossRef Xiao N, Zhou Y, Ling Z, Zhao Z, Qiu J (2013) Carbon foams made of in situ produced carbon nanocapsules and the use as a catalyst for oxidative dehydrogenation of ethylbenzene. Carbon 60:514–522CrossRef
8.
Zurück zum Zitat Zhou P, Chen Q (2016) Preparation and characterization of carbon foam derived from coal pitch. J Anal Appl Pyrol 122:370–376CrossRef Zhou P, Chen Q (2016) Preparation and characterization of carbon foam derived from coal pitch. J Anal Appl Pyrol 122:370–376CrossRef
9.
Zurück zum Zitat Jana P, Palomo del Barrio E, Fierro V, Medjahdi G, Celzard A (2016) Design of carbon foams for seasonal solar thermal energy storage. Carbon 109:771–787CrossRef Jana P, Palomo del Barrio E, Fierro V, Medjahdi G, Celzard A (2016) Design of carbon foams for seasonal solar thermal energy storage. Carbon 109:771–787CrossRef
10.
Zurück zum Zitat Inagaki M, Qiu J, Guo Q (2015) Carbon foam: preparation and application. Carbon 87:128–152CrossRef Inagaki M, Qiu J, Guo Q (2015) Carbon foam: preparation and application. Carbon 87:128–152CrossRef
11.
Zurück zum Zitat Walsh FC, Arenas LF, Ponce de León C, Reade GW, Whyte I, Mellor BG (2016) The continued development of reticulated vitreous carbon as a versatile electrode material: structure, properties and applications. Electrochim Acta 215:566–591CrossRef Walsh FC, Arenas LF, Ponce de León C, Reade GW, Whyte I, Mellor BG (2016) The continued development of reticulated vitreous carbon as a versatile electrode material: structure, properties and applications. Electrochim Acta 215:566–591CrossRef
12.
Zurück zum Zitat Lian Q, Lin Q, Liu H, Fang C, Luo K (2014) Preparation and electrochemical performance of carbon foam by direct pyrolysis of cyanate ester resin. J Anal Appl Pyrol 109:244–248CrossRef Lian Q, Lin Q, Liu H, Fang C, Luo K (2014) Preparation and electrochemical performance of carbon foam by direct pyrolysis of cyanate ester resin. J Anal Appl Pyrol 109:244–248CrossRef
13.
Zurück zum Zitat Gao S, Ge L, Rufford TE, Zhu Z (2017) The preparation of activated carbon discs from tar pitch and coal powder for adsorption of CO2, CH4 and N2. Micropor Mesopor Mat 238:19–26CrossRef Gao S, Ge L, Rufford TE, Zhu Z (2017) The preparation of activated carbon discs from tar pitch and coal powder for adsorption of CO2, CH4 and N2. Micropor Mesopor Mat 238:19–26CrossRef
14.
Zurück zum Zitat Micheli D, Morles RB, Marchetti M, Moglie F, Primiani VM (2014) Broadband electromagnetic characterization of carbon foam to metal contact. Carbon 68:149–158CrossRef Micheli D, Morles RB, Marchetti M, Moglie F, Primiani VM (2014) Broadband electromagnetic characterization of carbon foam to metal contact. Carbon 68:149–158CrossRef
15.
Zurück zum Zitat Moglie F, Micheli D, Laurenzi S, Marchetti M, Primiani VM (2012) Electromagnetic shielding performance of carbon foams. Carbon 50:1972–1980CrossRef Moglie F, Micheli D, Laurenzi S, Marchetti M, Primiani VM (2012) Electromagnetic shielding performance of carbon foams. Carbon 50:1972–1980CrossRef
16.
Zurück zum Zitat Fang Z, Cao X, Li C, Zhang H, Zhang J, Zhang H (2006) Investigation of carbon foams as microwave absorber: numerical prediction and experimental validation. Carbon 44:3348–3378CrossRef Fang Z, Cao X, Li C, Zhang H, Zhang J, Zhang H (2006) Investigation of carbon foams as microwave absorber: numerical prediction and experimental validation. Carbon 44:3348–3378CrossRef
17.
Zurück zum Zitat Narasimman R, Vijayan S, Dijith KS, Surendran KP, Prabhakaran K (2016) Carbon composite foams with improved strength and electromagnetic absorption from sucrose and multi-walled carbon nanotube. Mater Chem Phys 181:538–548CrossRef Narasimman R, Vijayan S, Dijith KS, Surendran KP, Prabhakaran K (2016) Carbon composite foams with improved strength and electromagnetic absorption from sucrose and multi-walled carbon nanotube. Mater Chem Phys 181:538–548CrossRef
18.
Zurück zum Zitat Liu H, Wu J, Zhuang Q, Dang A, Li T, Zhao T (2016) Preparation and the electromagnetic interference shielding in the X-band of carbon foams with Ni-Zn ferrite additive. J Eur Ceram Soc 36:3939–3946CrossRef Liu H, Wu J, Zhuang Q, Dang A, Li T, Zhao T (2016) Preparation and the electromagnetic interference shielding in the X-band of carbon foams with Ni-Zn ferrite additive. J Eur Ceram Soc 36:3939–3946CrossRef
19.
Zurück zum Zitat Li Y, Shen B, Pei X, Zhang Y, Yi D, Zhai W, Zhang L, Wei X, Zheng W (2016) Ultrathin carbon foams for effective electromagnetic interference shielding. Carbon 100:375–585CrossRef Li Y, Shen B, Pei X, Zhang Y, Yi D, Zhai W, Zhang L, Wei X, Zheng W (2016) Ultrathin carbon foams for effective electromagnetic interference shielding. Carbon 100:375–585CrossRef
20.
Zurück zum Zitat Lin Q, Qu L, Luo B, Fang C, Luo K (2014) Preparation and properties of multiwall carbon nanotubes/carbon foam composites. J Anal Appl Pyrol 105:177–182CrossRef Lin Q, Qu L, Luo B, Fang C, Luo K (2014) Preparation and properties of multiwall carbon nanotubes/carbon foam composites. J Anal Appl Pyrol 105:177–182CrossRef
21.
Zurück zum Zitat Li Q, Chen L, Ding J, Zhang J, Li X, Zheng K, Zhang X, Tian X (2016) Open-cell phenolic carbon foam and electromagnetic interference shielding properties. Carbon 104:90–105CrossRef Li Q, Chen L, Ding J, Zhang J, Li X, Zheng K, Zhang X, Tian X (2016) Open-cell phenolic carbon foam and electromagnetic interference shielding properties. Carbon 104:90–105CrossRef
22.
Zurück zum Zitat Song SA, Lee Y, Kim YS, Kim SS (2017) Mechanical and thermal properties of carbon foam derived from phenolic foam reinforced with composite particles. Compos Struct 173:1–8CrossRef Song SA, Lee Y, Kim YS, Kim SS (2017) Mechanical and thermal properties of carbon foam derived from phenolic foam reinforced with composite particles. Compos Struct 173:1–8CrossRef
23.
Zurück zum Zitat Farhan S, Wang R, Jiang H, Li K, Wang C (2016) A novel combination of simple foaming and freeze-drying processes for making carbon foam containing multiwalled carbon nanotubes. Ceram Int 42:8980–8989CrossRef Farhan S, Wang R, Jiang H, Li K, Wang C (2016) A novel combination of simple foaming and freeze-drying processes for making carbon foam containing multiwalled carbon nanotubes. Ceram Int 42:8980–8989CrossRef
24.
Zurück zum Zitat He S, Hou H, Chen W (2015) 3D porous and ultralight carbon hybrid nanostructure fabricated from carbon foam covered by monolayer of nitrogen-doped carbon nanotubes for high performance supercapacitors. J Power Sour 280:678–686CrossRef He S, Hou H, Chen W (2015) 3D porous and ultralight carbon hybrid nanostructure fabricated from carbon foam covered by monolayer of nitrogen-doped carbon nanotubes for high performance supercapacitors. J Power Sour 280:678–686CrossRef
25.
Zurück zum Zitat Barney IT, Lennaerts DSR, Higgins SR, Mukhopadhyay SM (2012) Specific surface area of hierarchical graphitic substrates suitable for multi-functional applications. Mater Lett 88:160–163CrossRef Barney IT, Lennaerts DSR, Higgins SR, Mukhopadhyay SM (2012) Specific surface area of hierarchical graphitic substrates suitable for multi-functional applications. Mater Lett 88:160–163CrossRef
26.
Zurück zum Zitat Jourdin L, Freguia S, Donose BC, Chen J, Wallace GG, Keller J, Flexer V (2014) A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J Mater Chem A 2:13093–13102CrossRef Jourdin L, Freguia S, Donose BC, Chen J, Wallace GG, Keller J, Flexer V (2014) A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J Mater Chem A 2:13093–13102CrossRef
27.
Zurück zum Zitat Flexer V, Chen J, Donose BC, Sherrell P, Wallace GG, Keller J (2013) The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems. Energy Environ Sci 6:1291–1298CrossRef Flexer V, Chen J, Donose BC, Sherrell P, Wallace GG, Keller J (2013) The nanostructure of three-dimensional scaffolds enhances the current density of microbial bioelectrochemical systems. Energy Environ Sci 6:1291–1298CrossRef
28.
Zurück zum Zitat Pan C, Xu X (2002) Synthesis of carbon nanotubes from ethanol flame. J Mater Sci Lett 21:1207–1209CrossRef Pan C, Xu X (2002) Synthesis of carbon nanotubes from ethanol flame. J Mater Sci Lett 21:1207–1209CrossRef
29.
Zurück zum Zitat Kumar M (2011) Carbon nanotube synthesis and growth mechanism. In: Yellampalli S (ed) Carbon nanotubes–synthesis, characterization, applications. InTechOpen, Croatia, pp 155–156 Kumar M (2011) Carbon nanotube synthesis and growth mechanism. In: Yellampalli S (ed) Carbon nanotubes–synthesis, characterization, applications. InTechOpen, Croatia, pp 155–156
30.
Zurück zum Zitat Sinnott SB, Andrews R, Qian D, Rao AM, Mao Z, Dickey EC (1999) Model of carbon nanotube growth through chemical vapor deposition. Chem Phys Lett 315:25–30CrossRef Sinnott SB, Andrews R, Qian D, Rao AM, Mao Z, Dickey EC (1999) Model of carbon nanotube growth through chemical vapor deposition. Chem Phys Lett 315:25–30CrossRef
31.
Zurück zum Zitat Kiciński W, Norek M, Bystrzejewski M (2013) Monolithic porous graphitic carbons obtained through catalytic graphitization of carbon xerogels. J Phys Chem Solids 74:101–109CrossRef Kiciński W, Norek M, Bystrzejewski M (2013) Monolithic porous graphitic carbons obtained through catalytic graphitization of carbon xerogels. J Phys Chem Solids 74:101–109CrossRef
32.
Zurück zum Zitat Yang X, Tang L, Guo Y, Liang C, Zhang Q, Kou K, Gu J (2017) Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-POSS functionalized nBN fillers. Compos Part A–Appl S 101:237–242CrossRef Yang X, Tang L, Guo Y, Liang C, Zhang Q, Kou K, Gu J (2017) Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-POSS functionalized nBN fillers. Compos Part A–Appl S 101:237–242CrossRef
33.
Zurück zum Zitat Tang Y, Dong W, Tang L, Zhang Y, Kong J, Gu J (2018) Fabrication and investigations on the polydopamine/KH-560 functionalized PBO fibers/cyanate ester wave-transparent composites. Compos Commun 8:36–41CrossRef Tang Y, Dong W, Tang L, Zhang Y, Kong J, Gu J (2018) Fabrication and investigations on the polydopamine/KH-560 functionalized PBO fibers/cyanate ester wave-transparent composites. Compos Commun 8:36–41CrossRef
34.
Zurück zum Zitat Liang C, Song P, Gu H, Ma C, Guo Y, Zhang H, Xu X, Zhang Q, Gu J (2017) Nanopolydopamine coupled fluorescent nanozinc oxide reinforced epoxy nanocomposites. Compos Part A–Appl S 102:126–136CrossRef Liang C, Song P, Gu H, Ma C, Guo Y, Zhang H, Xu X, Zhang Q, Gu J (2017) Nanopolydopamine coupled fluorescent nanozinc oxide reinforced epoxy nanocomposites. Compos Part A–Appl S 102:126–136CrossRef
35.
Zurück zum Zitat Mertal SB, Hossam H (2013) Flexible sensors based on nanoparticles. ACS Nano 7:8366–8378CrossRef Mertal SB, Hossam H (2013) Flexible sensors based on nanoparticles. ACS Nano 7:8366–8378CrossRef
Metadaten
Titel
A carbon nanotube/carbonaceous foam composite: simple preparation and potential application
verfasst von
Hong Lei
Qi Cheng
Publikationsdatum
19.06.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 18/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2599-3

Weitere Artikel der Ausgabe 18/2018

Journal of Materials Science 18/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.