Skip to main content
Erschienen in: Journal of Scientific Computing 1/2019

27.06.2018

A Class of Low Dissipative Schemes for Solving Kinetic Equations

verfasst von: Giacomo Dimarco, Cory Hauck, Raphaël Loubère

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We introduce an extension of the fast semi-Lagrangian scheme developed in J Comput Phys 255:680–698 (2013) in an effort to increase the spatial accuracy of the method. The basic idea of this extension is to modify the first-order accurate transport step of the original semi-Lagrangian scheme to allow for a general piecewise polynomial reconstruction of the distribution function. For each discrete velocity, we update the solution not at cell centers, but rather at the extreme points of the spatial reconstruction, the locations of which are different for each discrete velocity and change with time. Several approaches are discussed for evaluating the collision operator at these extreme points using only cell center values by making special assumption on the spatial variation of the collision operator. The result is a class of schemes that preserves the structure of the solution over very long times when compared to existing schemes in the literature. As a proof of concept, the new method is implemented in a one-dimensional setting, using piecewise linear reconstructions of the distribution function together with a related reconstruction of the collision operator. The method is derived both for the relatively simple Bhatnagar–Gross–Krook (BGK) operator as well as for the classical Boltzmann operator. Several numerical tests are used to assess the performance of the implementation, including comparisons with the original method in J Comput Phys 255:680–698 (2013) and with classical semi-Lagrangian methods of first and second order. In convergence tests, we observe uniform second-order accuracy across all flow regimes for the BGK operator and nearly second-order accuracy for the Boltzmann operator. In addition, we observe that the method outperforms the classical semi-Lagrangian approach, in particular when resolving fine solution structures in space.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
We consider different locations to highlight areas where we observe the largest differences in the methods.
 
2
A mesh convergence test, not reported, confirms that the wave locations for all schemes converge to the same location when the number of points increases.
 
Literatur
1.
Zurück zum Zitat Bird, G.A.: Molecular Gas Dynamics and Direct Simulation of Gas Flows. Clarendon Press, Oxford (1994) Bird, G.A.: Molecular Gas Dynamics and Direct Simulation of Gas Flows. Clarendon Press, Oxford (1994)
2.
Zurück zum Zitat Birsdall, C.K., Langdon, A.B.: Plasma Physics Via Computer Simulation. Series in Plasma Physics. Institute of Physics (IOP), London (2004) Birsdall, C.K., Langdon, A.B.: Plasma Physics Via Computer Simulation. Series in Plasma Physics. Institute of Physics (IOP), London (2004)
3.
Zurück zum Zitat Bobylev, A.V., Rjasanow, S.: Difference scheme for the Boltzmann equation based on the fast Fourier transform. Eur. J. Mech. B. Fluids 16(2), 293–306 (1997)MathSciNetMATH Bobylev, A.V., Rjasanow, S.: Difference scheme for the Boltzmann equation based on the fast Fourier transform. Eur. J. Mech. B. Fluids 16(2), 293–306 (1997)MathSciNetMATH
4.
Zurück zum Zitat Bobylev, A.V., Palczewski, A., Schneider, J.: On approximation of the Boltzmann equation by discrete velocity models. C. R. Acad. Sci. Paris Ser. I. Math 320, 639–644 (1995)MathSciNetMATH Bobylev, A.V., Palczewski, A., Schneider, J.: On approximation of the Boltzmann equation by discrete velocity models. C. R. Acad. Sci. Paris Ser. I. Math 320, 639–644 (1995)MathSciNetMATH
6.
Zurück zum Zitat Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1988)CrossRefMATH Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1988)CrossRefMATH
7.
Zurück zum Zitat Cercignani, C., Illner, R., Pulvirenti, Mario: The Mathematical Theory of Dilute Gases, vol. 106. Springer Science & Business Media, New York (2013)MATH Cercignani, C., Illner, R., Pulvirenti, Mario: The Mathematical Theory of Dilute Gases, vol. 106. Springer Science & Business Media, New York (2013)MATH
8.
Zurück zum Zitat Chacón, L., del-Castillo-Negrete, D., Hauck, C.D.: An asymptotic-preserving semi-Lagrangian algorithm for the time-dependent anisotropic heat transport equation. J. Comp. Phys. 272, 719–746 (2014)MathSciNetCrossRefMATH Chacón, L., del-Castillo-Negrete, D., Hauck, C.D.: An asymptotic-preserving semi-Lagrangian algorithm for the time-dependent anisotropic heat transport equation. J. Comp. Phys. 272, 719–746 (2014)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Cheng, C.Z., Knorr, G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22, 330–351 (1976)CrossRef Cheng, C.Z., Knorr, G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22, 330–351 (1976)CrossRef
10.
Zurück zum Zitat Crouseilles, N., Respaud, T., Sonnendrucker, E.: A forward semi-Lagrangian method for the numerical solution of the Vlasov equation. Comp. Phys. Commun. 180(10), 1730–1745 (2009)MathSciNetCrossRefMATH Crouseilles, N., Respaud, T., Sonnendrucker, E.: A forward semi-Lagrangian method for the numerical solution of the Vlasov equation. Comp. Phys. Commun. 180(10), 1730–1745 (2009)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Crouseilles, N., Mehrenberger, M., Sonnendrucker, E.: Conservative semi-Lagrangian schemes for Vlasov equations. J. Comp. Phys. 229, 1927–1953 (2010)MathSciNetCrossRefMATH Crouseilles, N., Mehrenberger, M., Sonnendrucker, E.: Conservative semi-Lagrangian schemes for Vlasov equations. J. Comp. Phys. 229, 1927–1953 (2010)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Degond, P., Dimarco, G., Pareschi, L.: The moment guided Monte Carlo method. Int. J. Numer. Methods Fluids 67, 189–213 (2011)MathSciNetCrossRefMATH Degond, P., Dimarco, G., Pareschi, L.: The moment guided Monte Carlo method. Int. J. Numer. Methods Fluids 67, 189–213 (2011)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Desvillettes, L., Mischler, S.: About the splitting algorithm for Boltzmann and BGK equations. Math. Mod. Methods Appl. Sci. 6, 1079–1101 (1996)CrossRefMATH Desvillettes, L., Mischler, S.: About the splitting algorithm for Boltzmann and BGK equations. Math. Mod. Methods Appl. Sci. 6, 1079–1101 (1996)CrossRefMATH
14.
Zurück zum Zitat Dimarco, G., Hauck, C., Loubère, R.: Multidimensional high order FK schemes for the Boltzmann equation (in progress) Dimarco, G., Hauck, C., Loubère, R.: Multidimensional high order FK schemes for the Boltzmann equation (in progress)
15.
Zurück zum Zitat Dimarco, G.: The hybrid moment guided Monte Carlo method for the Boltzmann equation. Kin. Rel. Models 6, 291–315 (2013)CrossRefMATH Dimarco, G.: The hybrid moment guided Monte Carlo method for the Boltzmann equation. Kin. Rel. Models 6, 291–315 (2013)CrossRefMATH
16.
Zurück zum Zitat Dimarco, G., Loubère, R.: Towards an ultra efficient kinetic scheme. Part I: basics on the BGK equation. J. Comput. Phys. 255, 680–698 (2013)MathSciNetCrossRefMATH Dimarco, G., Loubère, R.: Towards an ultra efficient kinetic scheme. Part I: basics on the BGK equation. J. Comput. Phys. 255, 680–698 (2013)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Dimarco, G., Loubère, R.: Towards an ultra efficient kinetic scheme. Part II: the high order case. J. Comput. Phys. 255, 699–719 (2013)MathSciNetCrossRefMATH Dimarco, G., Loubère, R.: Towards an ultra efficient kinetic scheme. Part II: the high order case. J. Comput. Phys. 255, 699–719 (2013)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Dimarco, G., Pareschi, L.: A fluid solver independent hybrid method for multiscale kinetic equations. SIAM J. Sci. Comput. 32, 603–634 (2010)MathSciNetCrossRefMATH Dimarco, G., Pareschi, L.: A fluid solver independent hybrid method for multiscale kinetic equations. SIAM J. Sci. Comput. 32, 603–634 (2010)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Dimarco, G., Pareschi, L.: Asymptotic preserving implicit-explicit Runge–Kutta methods for non linear kinetic equations. SIAM J. Numer. Anal. 49, 2057–2077 (2011)MathSciNetCrossRefMATH Dimarco, G., Pareschi, L.: Asymptotic preserving implicit-explicit Runge–Kutta methods for non linear kinetic equations. SIAM J. Numer. Anal. 49, 2057–2077 (2011)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Dimarco, G., Pareschi, L.: Exponential Runge–Kutta methods for stiff kinetic equations. SIAM J. Numer. Anal. 51, 1064–1087 (2013)MathSciNetCrossRefMATH Dimarco, G., Pareschi, L.: Exponential Runge–Kutta methods for stiff kinetic equations. SIAM J. Numer. Anal. 51, 1064–1087 (2013)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Dimarco, G., Loubère, R., Narski, J., Rey, T.: An efficient numerical method for solving the Boltzmann equation in multidimensions. J. Comp. Phys. 353, 46–81 (2018)MathSciNetCrossRefMATH Dimarco, G., Loubère, R., Narski, J., Rey, T.: An efficient numerical method for solving the Boltzmann equation in multidimensions. J. Comp. Phys. 353, 46–81 (2018)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Filbet, F., Russo, G.: High order numerical methods for the space non-homogeneous Boltzmann equation. J. Comput. Phys. 186, 457–480 (2003)MathSciNetCrossRefMATH Filbet, F., Russo, G.: High order numerical methods for the space non-homogeneous Boltzmann equation. J. Comput. Phys. 186, 457–480 (2003)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Filbet, F., Sonnendrücker, E., Bertrand, P.: Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172, 166–187 (2001)MathSciNetCrossRefMATH Filbet, F., Sonnendrücker, E., Bertrand, P.: Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172, 166–187 (2001)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Filbet, F., Mouhot, C., Pareschi, L.: Solving the Boltzmann equation in N log2 N. SIAM J. Sci. Comput. 28(3), 1029–1053 (2007)CrossRefMATH Filbet, F., Mouhot, C., Pareschi, L.: Solving the Boltzmann equation in N log2 N. SIAM J. Sci. Comput. 28(3), 1029–1053 (2007)CrossRefMATH
26.
Zurück zum Zitat Gamba, I.M., Tharkabhushaman, S.H.: Spectral-Lagrangian based methods applied to computation of non-equilibrium statistical states. J. Comput. Phys. 228, 2012–2036 (2009)MathSciNetCrossRef Gamba, I.M., Tharkabhushaman, S.H.: Spectral-Lagrangian based methods applied to computation of non-equilibrium statistical states. J. Comput. Phys. 228, 2012–2036 (2009)MathSciNetCrossRef
27.
Zurück zum Zitat Gamba, I.M., Haack, J.R., Hauck, C.D., Hu, J.: A fast spectral method for the Boltzmann collision operator with general collision kernels. SIAM J. Sci. Comput. 39, B658–B674 (2017)MathSciNetCrossRefMATH Gamba, I.M., Haack, J.R., Hauck, C.D., Hu, J.: A fast spectral method for the Boltzmann collision operator with general collision kernels. SIAM J. Sci. Comput. 39, B658–B674 (2017)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Groppi, M., Russo, G., Stracquadanio, G.: High order semi-Lagrangian methods for the BGK equation. Commun. Math. Sci. 14, 389414 (2016)MathSciNetCrossRefMATH Groppi, M., Russo, G., Stracquadanio, G.: High order semi-Lagrangian methods for the BGK equation. Commun. Math. Sci. 14, 389414 (2016)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Groppi, M., Russo, G., Stracquadanio, G.: Boundary conditions for semi-Lagrangian methods for the BGK model. Commun. Appl. Ind. Math 7(3), 138164 (2016)MathSciNetMATH Groppi, M., Russo, G., Stracquadanio, G.: Boundary conditions for semi-Lagrangian methods for the BGK model. Commun. Appl. Ind. Math 7(3), 138164 (2016)MathSciNetMATH
30.
Zurück zum Zitat Gross, E.P., Bathnagar, P.L., Krook, M.: A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)CrossRefMATH Gross, E.P., Bathnagar, P.L., Krook, M.: A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)CrossRefMATH
31.
Zurück zum Zitat Güçlü, Y., Hitchon, W.N.G.: A high order cell-centered semi-Lagrangian scheme for multi-dimensional kinetic simulations of neutral gas flows. J. Comput. Phys. 231, 3289–3316 (2012)MathSciNetCrossRefMATH Güçlü, Y., Hitchon, W.N.G.: A high order cell-centered semi-Lagrangian scheme for multi-dimensional kinetic simulations of neutral gas flows. J. Comput. Phys. 231, 3289–3316 (2012)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Güçlü, Y., Christlieb, A.J., Hitchon, W.N.G.: Arbitrarily high order convected scheme solution of the Vlasov–Poisson system. J. Comput. Phys. 270, 711–752 (2014)MathSciNetCrossRefMATH Güçlü, Y., Christlieb, A.J., Hitchon, W.N.G.: Arbitrarily high order convected scheme solution of the Vlasov–Poisson system. J. Comput. Phys. 270, 711–752 (2014)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Hauck, C.D., McClarren, R.G.: A collision-based hybrid method for time-dependent, linear, kinetic transport equations. Multiscale Model. Simul. 11, 1197–1227 (2013)MathSciNetCrossRefMATH Hauck, C.D., McClarren, R.G.: A collision-based hybrid method for time-dependent, linear, kinetic transport equations. Multiscale Model. Simul. 11, 1197–1227 (2013)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Homolle, T., Hadjiconstantinou, N.: A low-variance deviational simulation Monte Carlo for the Boltzmann equation. J. Comput. Phys. 226, 2341–2358 (2007)MathSciNetCrossRefMATH Homolle, T., Hadjiconstantinou, N.: A low-variance deviational simulation Monte Carlo for the Boltzmann equation. J. Comput. Phys. 226, 2341–2358 (2007)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Homolle, T., Hadjiconstantinou, N.: Low-variance deviational simulation Monte Carlo. Phys. Fluids 19, 041701 (2007)CrossRefMATH Homolle, T., Hadjiconstantinou, N.: Low-variance deviational simulation Monte Carlo. Phys. Fluids 19, 041701 (2007)CrossRefMATH
36.
Zurück zum Zitat Jin, S.: Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21, 441454 (1999)MathSciNetCrossRef Jin, S.: Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21, 441454 (1999)MathSciNetCrossRef
37.
Zurück zum Zitat LeVeque, R.J.: Numerical Methods for Conservation Laws, Lectures in Mathematics. Birkhauser Verlag, Basel (1992)CrossRefMATH LeVeque, R.J.: Numerical Methods for Conservation Laws, Lectures in Mathematics. Birkhauser Verlag, Basel (1992)CrossRefMATH
38.
Zurück zum Zitat Mieussens, L.: Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamic. Math. Mod. Methods App. Sci. 10, 1121–1149 (2000)MathSciNetMATH Mieussens, L.: Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamic. Math. Mod. Methods App. Sci. 10, 1121–1149 (2000)MathSciNetMATH
39.
40.
Zurück zum Zitat Palczewski, A., Schneider, J.: Existence, stability, and convergence of solutions of discrete velocity models to the Boltzmann equation. J. Stat. Phys. 91, 307–326 (1998)MathSciNetCrossRefMATH Palczewski, A., Schneider, J.: Existence, stability, and convergence of solutions of discrete velocity models to the Boltzmann equation. J. Stat. Phys. 91, 307–326 (1998)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Palczewski, A., Schneider, J., Bobylev, A.V.: A consistency result for a discrete-velocity model of the Boltzmann equation. SIAM J. Numer. Anal. 34, 1865–1883 (1997)MathSciNetCrossRefMATH Palczewski, A., Schneider, J., Bobylev, A.V.: A consistency result for a discrete-velocity model of the Boltzmann equation. SIAM J. Numer. Anal. 34, 1865–1883 (1997)MathSciNetCrossRefMATH
42.
Zurück zum Zitat Pareschi, L., Russo, G.: Numerical solution of the Boltzmann equation I: spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37, 12171245 (2000)MathSciNetCrossRefMATH Pareschi, L., Russo, G.: Numerical solution of the Boltzmann equation I: spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37, 12171245 (2000)MathSciNetCrossRefMATH
43.
Zurück zum Zitat Pareschi, L., Toscani, G.: Interacting Multi-agent Systems. Kinetic Equations and Monte Carlo Methods. Oxford University Press, New York (2013)MATH Pareschi, L., Toscani, G.: Interacting Multi-agent Systems. Kinetic Equations and Monte Carlo Methods. Oxford University Press, New York (2013)MATH
44.
Zurück zum Zitat Pareschi, L., Russo, G., Toscani, G.: Fast spectral methods for the Fokker PlanckLandau collision operator. J. Comput. Phys. 165, 216236 (2000)CrossRefMATH Pareschi, L., Russo, G., Toscani, G.: Fast spectral methods for the Fokker PlanckLandau collision operator. J. Comput. Phys. 165, 216236 (2000)CrossRefMATH
45.
Zurück zum Zitat Qiu, J.-M., Christlieb, A.: A Conservative high order semi-Lagrangian WENO method for the Vlasov equation. J. Comput. Phys. 229, 1130–1149 (2010)MathSciNetCrossRefMATH Qiu, J.-M., Christlieb, A.: A Conservative high order semi-Lagrangian WENO method for the Vlasov equation. J. Comput. Phys. 229, 1130–1149 (2010)MathSciNetCrossRefMATH
46.
Zurück zum Zitat Qiu, J.-M., Shu, C.-W.: Conservative semi-Lagrangian finite difference WENO formulations with applications to the Vlasov equation. Commun. Comput. Phys. 10, 979–1000 (2011)MathSciNetCrossRefMATH Qiu, J.-M., Shu, C.-W.: Conservative semi-Lagrangian finite difference WENO formulations with applications to the Vlasov equation. Commun. Comput. Phys. 10, 979–1000 (2011)MathSciNetCrossRefMATH
48.
Zurück zum Zitat Sod, G.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)MathSciNetCrossRefMATH Sod, G.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)MathSciNetCrossRefMATH
49.
Zurück zum Zitat Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149, 201220 (1999)MathSciNetCrossRefMATH Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149, 201220 (1999)MathSciNetCrossRefMATH
50.
51.
Zurück zum Zitat Xiong, T., Qiu, J.-M., Xu, Z., Christlieb, A.: High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation. J. Comput. Phys. 73, 618639 (2014)MathSciNetMATH Xiong, T., Qiu, J.-M., Xu, Z., Christlieb, A.: High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation. J. Comput. Phys. 73, 618639 (2014)MathSciNetMATH
Metadaten
Titel
A Class of Low Dissipative Schemes for Solving Kinetic Equations
verfasst von
Giacomo Dimarco
Cory Hauck
Raphaël Loubère
Publikationsdatum
27.06.2018
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2019
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0776-9

Weitere Artikel der Ausgabe 1/2019

Journal of Scientific Computing 1/2019 Zur Ausgabe