Skip to main content

2016 | OriginalPaper | Buchkapitel

A Decision Tree Classification Method Combining Intensity and RGB Value for LiDAR Data

verfasst von : Piyuan Yi, Peng Tong, Yingjun Zhao

Erschienen in: Geo-Informatics in Resource Management and Sustainable Ecosystem

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Airborne light detection and ranging (LiDAR) has played an important role in obtaining spatial information. But most existing LiDAR data classification algorithms mainly based on elevation and need more manual participation. Compared to these algorithms, we emphasize the use of intensity, RGB and echo number, and put forward a decision tree classification method. Before using this method, the intensity value must be calibrated first, and the RGB usually assigned from orthophoto. Then the experiment show that classification work can be completed with high accuracy while reducing manual workload. In addition, it was found intensity information is useful in target detection.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yao, W., Krzystek, P., Heurich, M.: Tree species classification and estimation of stem volume and DBH based on single tree extraction by exploiting airborne full-waveform LiDAR data. Remote Sens. Environ. 123, 368–380 (2012)CrossRef Yao, W., Krzystek, P., Heurich, M.: Tree species classification and estimation of stem volume and DBH based on single tree extraction by exploiting airborne full-waveform LiDAR data. Remote Sens. Environ. 123, 368–380 (2012)CrossRef
2.
Zurück zum Zitat Sun, C., Wu, Z., Lv, Z., Yao, N., Wei, J.: Quantifying different types of urban growth and the change dynamic in Guangzhou using multi-temporal remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 21, 409–417 (2013)CrossRef Sun, C., Wu, Z., Lv, Z., Yao, N., Wei, J.: Quantifying different types of urban growth and the change dynamic in Guangzhou using multi-temporal remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 21, 409–417 (2013)CrossRef
3.
Zurück zum Zitat Zhang, K., Yan, J., Chen, S.C.: Automatic construction of building footprints from airborne LiDAR data. IEEE Trans. Geosci. Remote Sens. 44(9), 2523–2533 (2006)CrossRef Zhang, K., Yan, J., Chen, S.C.: Automatic construction of building footprints from airborne LiDAR data. IEEE Trans. Geosci. Remote Sens. 44(9), 2523–2533 (2006)CrossRef
4.
Zurück zum Zitat Dorninger, P., Pfeifer, N.: A comprehensive automated 3D approach for building extraction, reconstruction, and regularization from airborne laser scanning point clouds. Sensors 8(11), 7323–7343 (2008)CrossRef Dorninger, P., Pfeifer, N.: A comprehensive automated 3D approach for building extraction, reconstruction, and regularization from airborne laser scanning point clouds. Sensors 8(11), 7323–7343 (2008)CrossRef
5.
Zurück zum Zitat Korhonen, L., Korpela, I., Heiskanen, J., Maltamo, M.: Airborne discrete return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. Remote Sens. Environ. 115(4), 1065–1080 (2010)CrossRef Korhonen, L., Korpela, I., Heiskanen, J., Maltamo, M.: Airborne discrete return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. Remote Sens. Environ. 115(4), 1065–1080 (2010)CrossRef
6.
Zurück zum Zitat Mallet, C., Bretar, F.: Full-waveform topographic lidar: state-of-the-art. ISPRS J. Photogrammetry Remote Sens. 64(1), 1–16 (2009)CrossRef Mallet, C., Bretar, F.: Full-waveform topographic lidar: state-of-the-art. ISPRS J. Photogrammetry Remote Sens. 64(1), 1–16 (2009)CrossRef
7.
Zurück zum Zitat Qin, Y., Li, B., Niu, Z., et al.: Stepwise decomposition and relative radiometric normalization for small footprint LiDAR waveform. Sci. China Earth Sci. 41(1), 103–109 (2011) Qin, Y., Li, B., Niu, Z., et al.: Stepwise decomposition and relative radiometric normalization for small footprint LiDAR waveform. Sci. China Earth Sci. 41(1), 103–109 (2011)
8.
Zurück zum Zitat Bork, E.W., Su, J.G.: Integrating LIDAR data and multispectral imagery for enhanced classification of rangeland vegetation: a meta analysis. Remote Sens. Environ. 111(1), 11–24 (2007)CrossRef Bork, E.W., Su, J.G.: Integrating LIDAR data and multispectral imagery for enhanced classification of rangeland vegetation: a meta analysis. Remote Sens. Environ. 111(1), 11–24 (2007)CrossRef
9.
Zurück zum Zitat Dalponte, M., Bruzzone, L., Gianelle, D.: Fusion of hyperspectral and LiDAR remote sensing data for classification of complex forest areas. IEEE Trans. Geosci. Remote Sens. 46(5), 1416–1427 (2008)CrossRef Dalponte, M., Bruzzone, L., Gianelle, D.: Fusion of hyperspectral and LiDAR remote sensing data for classification of complex forest areas. IEEE Trans. Geosci. Remote Sens. 46(5), 1416–1427 (2008)CrossRef
10.
Zurück zum Zitat Yan, W.Y., Shaker, A., Habib, A., Kersting, A.P.: Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction. ISPRS J. Photogrammetry Remote Sens. 67(2), 35–44 (2012)CrossRef Yan, W.Y., Shaker, A., Habib, A., Kersting, A.P.: Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction. ISPRS J. Photogrammetry Remote Sens. 67(2), 35–44 (2012)CrossRef
11.
Zurück zum Zitat Wagner, W.: Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: basic physical concepts. ISPRS J. Photogrammetry Remote Sens. 65, 505–513 (2010)CrossRef Wagner, W.: Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: basic physical concepts. ISPRS J. Photogrammetry Remote Sens. 65, 505–513 (2010)CrossRef
12.
Zurück zum Zitat Donoghue, D.M.M., Watt, P.J., Cox, N.J., Wilson, J.: Remote sensing of species mixtures in conifer plantations using Lidar height and intensity data. Remote Sens. Environ. 110(4), 509–522 (2007)CrossRef Donoghue, D.M.M., Watt, P.J., Cox, N.J., Wilson, J.: Remote sensing of species mixtures in conifer plantations using Lidar height and intensity data. Remote Sens. Environ. 110(4), 509–522 (2007)CrossRef
13.
Zurück zum Zitat Han, W., Zhao, S., Feng, X., Chen, L.: Extraction of multilayer vegetation coverage using airborne LiDAR discrete points with intensity information in urban areas: a casestudy in Nanjing City, China. Int. J. Appl. Earth Obs. Geoinf. 30, 56–64 (2014)CrossRef Han, W., Zhao, S., Feng, X., Chen, L.: Extraction of multilayer vegetation coverage using airborne LiDAR discrete points with intensity information in urban areas: a casestudy in Nanjing City, China. Int. J. Appl. Earth Obs. Geoinf. 30, 56–64 (2014)CrossRef
14.
Zurück zum Zitat Ramdani, F.: Urban vegetation mapping from fused hyperspectral image and LiDAR data with application to monitor urban tree heights. J. Geogr. Inf. Syst. 5, 404–408 (2013) Ramdani, F.: Urban vegetation mapping from fused hyperspectral image and LiDAR data with application to monitor urban tree heights. J. Geogr. Inf. Syst. 5, 404–408 (2013)
15.
Zurück zum Zitat Chen, L., Zhao, S., Han, W., Li, Y.: Building detection in an urban area using LiDAR data and Quickbird imagery. Int. J. Remote Sens. 16, 5135–5148 (2012)CrossRef Chen, L., Zhao, S., Han, W., Li, Y.: Building detection in an urban area using LiDAR data and Quickbird imagery. Int. J. Remote Sens. 16, 5135–5148 (2012)CrossRef
16.
Zurück zum Zitat Huang, C., Peng, Y., Lang, M., Yeo, I.-Y., McCarty, G.: Wetland inundation mapping and change monitoring using Landsat and airborne LiDAR data. Remote Sens. Environ. 141, 231–242 (2014)CrossRef Huang, C., Peng, Y., Lang, M., Yeo, I.-Y., McCarty, G.: Wetland inundation mapping and change monitoring using Landsat and airborne LiDAR data. Remote Sens. Environ. 141, 231–242 (2014)CrossRef
17.
Zurück zum Zitat Chust, G., Galparsoro, I., Borja, A., Franco, J., Uriarte, A.: Coastal and estuarine habitat mapping, using LIDAR height and intensity and multi-spectral imagery. Estuar. Coast. Shelf Sci. 78, 633–643 (2008)CrossRef Chust, G., Galparsoro, I., Borja, A., Franco, J., Uriarte, A.: Coastal and estuarine habitat mapping, using LIDAR height and intensity and multi-spectral imagery. Estuar. Coast. Shelf Sci. 78, 633–643 (2008)CrossRef
18.
Zurück zum Zitat Baltsavias, E.P.: Airborne laser scanning: basic relations and formulas. ISPRS J. Photogrammetry Remote Sens. 54(2/3), 199–214 (1999)CrossRef Baltsavias, E.P.: Airborne laser scanning: basic relations and formulas. ISPRS J. Photogrammetry Remote Sens. 54(2/3), 199–214 (1999)CrossRef
19.
Zurück zum Zitat Yoon, J.-S., Shin, J.-I., Lee, K.-S.: Land cover characteristics of airborne LiDAR intensity data: a case study. Geosci. Remote Sens. Lett. 5(4), 801–805 (2008)CrossRef Yoon, J.-S., Shin, J.-I., Lee, K.-S.: Land cover characteristics of airborne LiDAR intensity data: a case study. Geosci. Remote Sens. Lett. 5(4), 801–805 (2008)CrossRef
20.
Zurück zum Zitat Mesas-Carrascosa, F.J., Castillejo-González, I.L., de la Orden, M.S., Porras, A.G.-F.: Combining LiDAR intensity with aerial camera data to discriminate agricultural land uses. Comput. Electron. Agric. 84, 36–46 (2012)CrossRef Mesas-Carrascosa, F.J., Castillejo-González, I.L., de la Orden, M.S., Porras, A.G.-F.: Combining LiDAR intensity with aerial camera data to discriminate agricultural land uses. Comput. Electron. Agric. 84, 36–46 (2012)CrossRef
21.
Zurück zum Zitat Höfle, B., Pfeifer, N.: Correction of laser scanning intensity data: data and model-driven approaches. ISPRS J. Photogrammetry Remote Sens. 62(6), 415–433 (2007)CrossRef Höfle, B., Pfeifer, N.: Correction of laser scanning intensity data: data and model-driven approaches. ISPRS J. Photogrammetry Remote Sens. 62(6), 415–433 (2007)CrossRef
22.
Zurück zum Zitat Zhang, X.: The Theory and Methods of Airborne Light Detection and Ranging Technology. Wuhan University Press, WuHan (2007) Zhang, X.: The Theory and Methods of Airborne Light Detection and Ranging Technology. Wuhan University Press, WuHan (2007)
23.
Zurück zum Zitat Axelsson, P.: DEM generation from laser scanner data using adaptive TIN models. In: International Archives of the Photogrammetry, vol. XXXIII(1), pp. 10–117 (2000) Axelsson, P.: DEM generation from laser scanner data using adaptive TIN models. In: International Archives of the Photogrammetry, vol. XXXIII(1), pp. 10–117 (2000)
24.
Zurück zum Zitat Soininen, A.: Terrasolid. TerraScan User’s Guide, 3 October 2011 Soininen, A.: Terrasolid. TerraScan User’s Guide, 3 October 2011
Metadaten
Titel
A Decision Tree Classification Method Combining Intensity and RGB Value for LiDAR Data
verfasst von
Piyuan Yi
Peng Tong
Yingjun Zhao
Copyright-Jahr
2016
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-49155-3_17

Neuer Inhalt