Skip to main content
Erschienen in: Journal of Materials Science 17/2014

01.09.2014

A glycerol–water-based nanofluid containing graphene oxide nanosheets

verfasst von: Ali Ijam, A. Moradi Golsheikh, R. Saidur, P. Ganesan

Erschienen in: Journal of Materials Science | Ausgabe 17/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanofluids are simply the dispersion of nanometer-sized particles in different fluids. Graphene oxide nanosheets (GONs) were prepared by exfoliating the graphite oxide. The GONs were investigated using Fourier transform-infrared spectroscopy, Raman spectroscopy, XRD analysis, high-resolution emission electron microscopy, transmission electron microscopy, and UV–visible spectroscopy. GONs/glycerol–water-based nanofluid was prepared by the two-step method. The stability of the nanofluid was investigated with respect to time. Thermal and electrical conductivity of the prepared nanofluid was examined with different temperatures (25–45 °C) and weight fractions (0.02–0.1 wt%). The nanofluid is found to be stable for more than 5 months. The results showed an enhancement in thermal conductivity of about 4.5 % at 25 °C with a weight fraction of 0.02 %. The improvement was up to 11.7 % with a weight fraction of 0.1 wt% at 45 °C. The electrical conductivity was increased with increasing the weight fraction and temperature. The improvement in electrical conductivity was about 5890 % at 25 °C and 0.1 wt%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Choi SU, Eastman J (1995) Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab., Argonne Choi SU, Eastman J (1995) Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab., Argonne
2.
Zurück zum Zitat Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720CrossRef Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720CrossRef
3.
Zurück zum Zitat Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci 44:367–373CrossRef Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci 44:367–373CrossRef
4.
Zurück zum Zitat Assael MJ, Chen CF, Metaxa I, Wakeham WA (2004) Thermal conductivity of suspensions of carbon nanotubes in water. Int J Thermophys 25:971–985CrossRef Assael MJ, Chen CF, Metaxa I, Wakeham WA (2004) Thermal conductivity of suspensions of carbon nanotubes in water. Int J Thermophys 25:971–985CrossRef
5.
Zurück zum Zitat Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef
6.
Zurück zum Zitat Novoselov K, Geim AK, Morozov S, Jiang D, Grigorieva MKI, Dubonos S, Firsov A (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200CrossRef Novoselov K, Geim AK, Morozov S, Jiang D, Grigorieva MKI, Dubonos S, Firsov A (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200CrossRef
7.
Zurück zum Zitat Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196CrossRef Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196CrossRef
8.
Zurück zum Zitat Chen Z, Lin Y-M, Rooks MJ, Avouris P (2007) Graphene nano-ribbon electronics. Phys E 40:228–232CrossRef Chen Z, Lin Y-M, Rooks MJ, Avouris P (2007) Graphene nano-ribbon electronics. Phys E 40:228–232CrossRef
9.
Zurück zum Zitat Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655CrossRef Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655CrossRef
10.
Zurück zum Zitat Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef
11.
Zurück zum Zitat Yu W, Xie H, Bao D (2010) Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets. Nanotechnology 21:055705 (7 pp) Yu W, Xie H, Bao D (2010) Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets. Nanotechnology 21:055705 (7 pp)
12.
Zurück zum Zitat Yu W, Xie H, Chen W (2010) Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets. J Appl Phys 107:094317 (6 pp) Yu W, Xie H, Chen W (2010) Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets. J Appl Phys 107:094317 (6 pp)
13.
Zurück zum Zitat Baby TT, Ramaprabhu S (2010) Investigation of thermal and electrical conductivity of graphene based nanofluids. J Appl Phys 108:124308 (6 pp) Baby TT, Ramaprabhu S (2010) Investigation of thermal and electrical conductivity of graphene based nanofluids. J Appl Phys 108:124308 (6 pp)
14.
Zurück zum Zitat Yu W, Xie H, Wang X, Wang X (2011) Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys Lett A 375:1323–1328CrossRef Yu W, Xie H, Wang X, Wang X (2011) Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys Lett A 375:1323–1328CrossRef
15.
Zurück zum Zitat Aravind SSJ, Ramaprabhu S (2011) Surfactant free graphene nanosheets based nanofluids by in situ reduction of alkaline graphite oxide suspensions. J Appl Phys 110:124326 (5 pp) Aravind SSJ, Ramaprabhu S (2011) Surfactant free graphene nanosheets based nanofluids by in situ reduction of alkaline graphite oxide suspensions. J Appl Phys 110:124326 (5 pp)
16.
Zurück zum Zitat Ming HN (2010) Simple room-temperature preparation of high-yield large-area graphene oxide. Int J Nanomed 6:3443–3448 Ming HN (2010) Simple room-temperature preparation of high-yield large-area graphene oxide. Int J Nanomed 6:3443–3448
17.
Zurück zum Zitat Khanra P, Kuila T, Bae SH, Kim NH, Lee JH (2012) Electrochemically exfoliated graphene using 9-anthracene carboxylic acid for supercapacitor application. J Mater Chem 22:24403–24410CrossRef Khanra P, Kuila T, Bae SH, Kim NH, Lee JH (2012) Electrochemically exfoliated graphene using 9-anthracene carboxylic acid for supercapacitor application. J Mater Chem 22:24403–24410CrossRef
18.
Zurück zum Zitat Khanra P, Kuila T, Kim NH, Bae SH, Yu D-s, Lee JH (2012) Simultaneous bio-functionalization and reduction of graphene oxide by baker’s yeast. Chem Eng J 183:526–533CrossRef Khanra P, Kuila T, Kim NH, Bae SH, Yu D-s, Lee JH (2012) Simultaneous bio-functionalization and reduction of graphene oxide by baker’s yeast. Chem Eng J 183:526–533CrossRef
19.
Zurück zum Zitat Moradi Golsheikh A, Huang NM, Lim HN, Zakaria R, Yin C-Y (2013) One-step electrodeposition synthesis of silver-nanoparticle-decorated graphene on indium–tin-oxide for enzymeless hydrogen peroxide detection. Carbon 62:405–412CrossRef Moradi Golsheikh A, Huang NM, Lim HN, Zakaria R, Yin C-Y (2013) One-step electrodeposition synthesis of silver-nanoparticle-decorated graphene on indium–tin-oxide for enzymeless hydrogen peroxide detection. Carbon 62:405–412CrossRef
20.
Zurück zum Zitat Van Khai T, Na HG, Kwak DS, Kwon YJ, Ham H, Shim KB, Kim HW (2012) Significant enhancement of blue emission and electrical conductivity of N-doped graphene. J Mater Chem 22:17992–18003CrossRef Van Khai T, Na HG, Kwak DS, Kwon YJ, Ham H, Shim KB, Kim HW (2012) Significant enhancement of blue emission and electrical conductivity of N-doped graphene. J Mater Chem 22:17992–18003CrossRef
21.
Zurück zum Zitat Kaniyoor A, Baby TT, Ramaprabhu S (2010) Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide. J Mater Chem 20:8467–8469CrossRef Kaniyoor A, Baby TT, Ramaprabhu S (2010) Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide. J Mater Chem 20:8467–8469CrossRef
22.
Zurück zum Zitat Cheng C, Nie S, Li S, Peng H, Yang H, Ma L, Sun S, Zhao C (2013) Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors. J Mater Chem B 1:265–275CrossRef Cheng C, Nie S, Li S, Peng H, Yang H, Ma L, Sun S, Zhao C (2013) Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors. J Mater Chem B 1:265–275CrossRef
23.
Zurück zum Zitat Pham VH, Cuong TV, Hur SH, Oh E, Kim EJ, Shin EW, Chung JS (2011) Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone. J Mater Chem 21:3371–3377CrossRef Pham VH, Cuong TV, Hur SH, Oh E, Kim EJ, Shin EW, Chung JS (2011) Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone. J Mater Chem 21:3371–3377CrossRef
24.
Zurück zum Zitat Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:075414–13CrossRef Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:075414–13CrossRef
25.
Zurück zum Zitat Seo J-M, Jeon I-Y, Baek J-B (2013) Mechanochemically driven solid-state Diels–Alder reaction of graphite into graphene nanoplatelets. Chem Sci 4:4273–4277CrossRef Seo J-M, Jeon I-Y, Baek J-B (2013) Mechanochemically driven solid-state Diels–Alder reaction of graphite into graphene nanoplatelets. Chem Sci 4:4273–4277CrossRef
26.
Zurück zum Zitat Prasher R, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94:025901 (4 pp) Prasher R, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94:025901 (4 pp)
27.
Zurück zum Zitat Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84:4316–4318CrossRef Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84:4316–4318CrossRef
28.
Zurück zum Zitat Shima PD, Philip J, Raj B (2009) Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Appl Phys Lett 94:223101 (3 pp) Shima PD, Philip J, Raj B (2009) Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Appl Phys Lett 94:223101 (3 pp)
29.
Zurück zum Zitat John P, Shima PD, Baldev R (2008) Evidence for enhanced thermal conduction through percolating structures in nanofluids. Nanotechnology 19:305706 (7 pp) John P, Shima PD, Baldev R (2008) Evidence for enhanced thermal conduction through percolating structures in nanofluids. Nanotechnology 19:305706 (7 pp)
30.
Zurück zum Zitat Sastry NNV, Avijit B, Sundararajan T, Sarit KD (2008) Predicting the effective thermal conductivity of carbon nanotube based nanofluids. Nanotechnology 19:055704 (8 pp) Sastry NNV, Avijit B, Sundararajan T, Sarit KD (2008) Predicting the effective thermal conductivity of carbon nanotube based nanofluids. Nanotechnology 19:055704 (8 pp)
31.
Zurück zum Zitat Wang B, Hao J, Li H (2013) Remarkable improvements in the stability and thermal conductivity of graphite/ethylene glycol nanofluids caused by a graphene oxide percolation structure. Dalton Trans 42:5866–5873CrossRef Wang B, Hao J, Li H (2013) Remarkable improvements in the stability and thermal conductivity of graphite/ethylene glycol nanofluids caused by a graphene oxide percolation structure. Dalton Trans 42:5866–5873CrossRef
32.
Zurück zum Zitat Baby TT, Ramaprabhu S (2011) Enhanced convective heat transfer using graphene dispersed nanofluids. Nanoscale Res Lett 6:289 (9 pp) Baby TT, Ramaprabhu S (2011) Enhanced convective heat transfer using graphene dispersed nanofluids. Nanoscale Res Lett 6:289 (9 pp)
33.
Zurück zum Zitat Gupta SS, Manoj Siva V, Krishnan S, Sreeprasad TS, Singh PK, Pradeep T, Das SK (2011) Thermal conductivity enhancement of nanofluids containing graphene nanosheets. J Appl Phys 110:084302 (6 pp) Gupta SS, Manoj Siva V, Krishnan S, Sreeprasad TS, Singh PK, Pradeep T, Das SK (2011) Thermal conductivity enhancement of nanofluids containing graphene nanosheets. J Appl Phys 110:084302 (6 pp)
34.
Zurück zum Zitat Tadjarodi A, Zabihi F (2013) Thermal conductivity studies of novel nanofluids based on metallic silver decorated mesoporous silica nanoparticles. Mater Res Bull 48:4150–4156CrossRef Tadjarodi A, Zabihi F (2013) Thermal conductivity studies of novel nanofluids based on metallic silver decorated mesoporous silica nanoparticles. Mater Res Bull 48:4150–4156CrossRef
35.
Zurück zum Zitat Ghozatloo A, Shariaty-Niasar M, Rashidi AM (2013) Preparation of nanofluids from functionalized graphene by new alkaline method and study on the thermal conductivity and stability. Int Commun Heat Mass 42:89–94CrossRef Ghozatloo A, Shariaty-Niasar M, Rashidi AM (2013) Preparation of nanofluids from functionalized graphene by new alkaline method and study on the thermal conductivity and stability. Int Commun Heat Mass 42:89–94CrossRef
36.
Zurück zum Zitat Baby TT, Ramaprabhu S (2011) Synthesis and nanofluid application of silver nanoparticles decorated graphene. J Mater Chem 21:9702–9709CrossRef Baby TT, Ramaprabhu S (2011) Synthesis and nanofluid application of silver nanoparticles decorated graphene. J Mater Chem 21:9702–9709CrossRef
37.
Zurück zum Zitat Baby TT, Ramaprabhu S (2011) Synthesis and transport properties of metal oxide decorated graphene dispersed nanofluids. J Phys Chem C 115:8527–8533CrossRef Baby TT, Ramaprabhu S (2011) Synthesis and transport properties of metal oxide decorated graphene dispersed nanofluids. J Phys Chem C 115:8527–8533CrossRef
38.
Zurück zum Zitat Aravind SSJ, Ramaprabhu S (2013) Graphene-multiwalled carbon nanotube-based nanofluids for improved heat dissipation. RSC Adv 3:4199–4206CrossRef Aravind SSJ, Ramaprabhu S (2013) Graphene-multiwalled carbon nanotube-based nanofluids for improved heat dissipation. RSC Adv 3:4199–4206CrossRef
39.
Zurück zum Zitat Kole M, Dey TK (2013) Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids. J Appl Phys 113:084307 (8 pp) Kole M, Dey TK (2013) Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids. J Appl Phys 113:084307 (8 pp)
40.
Zurück zum Zitat Ganguly S, Sikdar S, Basu S (2009) Experimental investigation of the effective electrical conductivity of aluminum oxide nanofluids. Powder Technol 196:326–330CrossRef Ganguly S, Sikdar S, Basu S (2009) Experimental investigation of the effective electrical conductivity of aluminum oxide nanofluids. Powder Technol 196:326–330CrossRef
41.
Zurück zum Zitat Hunter RJ (1981) Zeta potential in colloid science: principles and applications. Academic Press, London Hunter RJ (1981) Zeta potential in colloid science: principles and applications. Academic Press, London
42.
Zurück zum Zitat Lyklema J (2005) Fundamentals of interface and colloid science: soft colloids. Elsevier, Amsterdam Lyklema J (2005) Fundamentals of interface and colloid science: soft colloids. Elsevier, Amsterdam
43.
Zurück zum Zitat Minea A, Luciu R (2012) Investigations on electrical conductivity of stabilized water based Al2O3 nanofluids. Microfluid Nanofluid 13:977–985CrossRef Minea A, Luciu R (2012) Investigations on electrical conductivity of stabilized water based Al2O3 nanofluids. Microfluid Nanofluid 13:977–985CrossRef
44.
Zurück zum Zitat White SB, Shih AJ-M, Pipe KP (2011) Investigation of the electrical conductivity of propylene glycol-based ZnO nanofluids. Nanoscale Res Lett 6:346 (5 pp) White SB, Shih AJ-M, Pipe KP (2011) Investigation of the electrical conductivity of propylene glycol-based ZnO nanofluids. Nanoscale Res Lett 6:346 (5 pp)
45.
Zurück zum Zitat Wong K-FV, Kurma T (2008) Transport properties of alumina nanofluids. Nanotechnology 19:345702 (8 pp) Wong K-FV, Kurma T (2008) Transport properties of alumina nanofluids. Nanotechnology 19:345702 (8 pp)
Metadaten
Titel
A glycerol–water-based nanofluid containing graphene oxide nanosheets
verfasst von
Ali Ijam
A. Moradi Golsheikh
R. Saidur
P. Ganesan
Publikationsdatum
01.09.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8312-2

Weitere Artikel der Ausgabe 17/2014

Journal of Materials Science 17/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.