Skip to main content

2021 | OriginalPaper | Buchkapitel

A Hierarchical Feature Constraint to Camouflage Medical Adversarial Attacks

verfasst von : Qingsong Yao, Zecheng He, Yi Lin, Kai Ma, Yefeng Zheng, S. Kevin Zhou

Erschienen in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deep neural networks for medical images are extremely vulnerable to adversarial examples (AEs), which poses security concerns on clinical decision-making. Recent findings have shown that existing medical AEs are easy to detect in feature space. To better understand this phenomenon, we thoroughly investigate the characteristic of traditional medical AEs in feature space. Specifically, we first perform a stress test to reveal the vulnerability of medical images and compare them to natural images. Then, we theoretically prove that the existing adversarial attacks manipulate the prediction by continuously optimizing the vulnerable representations in a fixed direction, leading to outlier representations in feature space. Interestingly, we find this vulnerability is a double-edged sword that can be exploited to help hide AEs in the feature space. We propose a novel hierarchical feature constraint (HFC) as an add-on to existing white-box attacks, which encourages hiding the adversarial representation in the normal feature distribution. We evaluate the proposed method on two public medical image datasets, namely Fundoscopy and Chest X-Ray. Experimental results demonstrate the superiority of our HFC as it bypasses an array of state-of-the-art adversarial medical AEs detector more efficiently than competing adaptive attacks. Our code is available at https://​github.​com/​qsyao/​Hierarchical_​Feature_​Constraint.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
We provide the proof in the supplementary material.
 
2
The hyperparameter analysis can be found in the supplementary material.
 
Literatur
1.
Zurück zum Zitat Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. In: ICLR (2018) Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. In: ICLR (2018)
2.
Zurück zum Zitat Carlini, N., Wagner, D.: Adversarial examples are not easily detected: bypassing ten detection methods. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 3–14 (2017) Carlini, N., Wagner, D.: Adversarial examples are not easily detected: bypassing ten detection methods. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 3–14 (2017)
3.
Zurück zum Zitat Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: IEEE Symposium on Security and Privacy, pp. 39–57 (2017) Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: IEEE Symposium on Security and Privacy, pp. 39–57 (2017)
4.
Zurück zum Zitat Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22 (1977)MathSciNetMATH Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22 (1977)MathSciNetMATH
5.
Zurück zum Zitat Dong, Y., et al.: Benchmarking adversarial robustness. In: CVPR (2020) Dong, Y., et al.: Benchmarking adversarial robustness. In: CVPR (2020)
6.
Zurück zum Zitat Dong, Y., et al.: Boosting adversarial attacks with momentum. In: CVPR, pp. 9185–9193 (2018) Dong, Y., et al.: Boosting adversarial attacks with momentum. In: CVPR, pp. 9185–9193 (2018)
7.
Zurück zum Zitat Dziugaite, G.K., Ghahramani, Z., Roy, D.M.: A study of the effect of JPG compression on adversarial images. arXiv preprint arXiv:1608.00853 (2016) Dziugaite, G.K., Ghahramani, Z., Roy, D.M.: A study of the effect of JPG compression on adversarial images. arXiv preprint arXiv:​1608.​00853 (2016)
8.
Zurück zum Zitat Feinman, R., Curtin, R.R., Shintre, S., Gardner, A.B.: Detecting adversarial samples from artifacts. arXiv preprint arXiv:1703.00410 (2017) Feinman, R., Curtin, R.R., Shintre, S., Gardner, A.B.: Detecting adversarial samples from artifacts. arXiv preprint arXiv:​1703.​00410 (2017)
9.
Zurück zum Zitat Finlayson, S.G., Chung, H.W., Kohane, I.S., Beam, A.L.: Adversarial attacks against medical deep learning systems. Science 363(6433), 1287–1289 (2018)CrossRef Finlayson, S.G., Chung, H.W., Kohane, I.S., Beam, A.L.: Adversarial attacks against medical deep learning systems. Science 363(6433), 1287–1289 (2018)CrossRef
10.
Zurück zum Zitat Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR (2015) Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR (2015)
11.
Zurück zum Zitat He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
12.
Zurück zum Zitat He, X., Yang, S., Li, G., Li, H., Chang, H., Yu, Y.: Non-local context encoder: Robust biomedical image segmentation against adversarial attacks. In: AAAI, vol. 33, pp. 8417–8424 (2019) He, X., Yang, S., Li, G., Li, H., Chang, H., Yu, Y.: Non-local context encoder: Robust biomedical image segmentation against adversarial attacks. In: AAAI, vol. 33, pp. 8417–8424 (2019)
15.
Zurück zum Zitat Krizhevsky, A.: Learning multiple layers of features from tiny images. University of Toronto, May 2012 Krizhevsky, A.: Learning multiple layers of features from tiny images. University of Toronto, May 2012
16.
Zurück zum Zitat Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale. In: ICLR (2017) Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale. In: ICLR (2017)
17.
Zurück zum Zitat Ji, W., et al.: Uncertainty quantification for medical image segmentation using dynamic label factor allocation among multiple raters. In: MICCAI on QUBIQ Workshop (2020) Ji, W., et al.: Uncertainty quantification for medical image segmentation using dynamic label factor allocation among multiple raters. In: MICCAI on QUBIQ Workshop (2020)
18.
Zurück zum Zitat Ji, W., et al.: Learning calibrated medical image segmentation via multi-rater agreement modeling. In: CVPR, pp. 12341–12351, June 2021 Ji, W., et al.: Learning calibrated medical image segmentation via multi-rater agreement modeling. In: CVPR, pp. 12341–12351, June 2021
19.
Zurück zum Zitat Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In: ICLR, pp. 7167–7177 (2018) Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In: ICLR, pp. 7167–7177 (2018)
20.
Zurück zum Zitat Li, H., et al.: High-resolution chest x-ray bone suppression using unpaired CT structural priors. IEEE Trans. Med. Imaging 39, 3053–3063 (2020)CrossRef Li, H., et al.: High-resolution chest x-ray bone suppression using unpaired CT structural priors. IEEE Trans. Med. Imaging 39, 3053–3063 (2020)CrossRef
22.
Zurück zum Zitat Li, X., Zhu, D.: Robust detection of adversarial attacks on medical images. In: IEEE International Symposium on Biomedical Imaging, pp. 1154–1158. IEEE (2020) Li, X., Zhu, D.: Robust detection of adversarial attacks on medical images. In: IEEE International Symposium on Biomedical Imaging, pp. 1154–1158. IEEE (2020)
23.
Zurück zum Zitat Lu, J., Issaranon, T., Forsyth, D.: SafetyNet: detecting and rejecting adversarial examples robustly. In: ICCV, October 2017 Lu, J., Issaranon, T., Forsyth, D.: SafetyNet: detecting and rejecting adversarial examples robustly. In: ICCV, October 2017
24.
Zurück zum Zitat Ma, X., et al.: Characterizing adversarial subspaces using local intrinsic dimensionality. In: ICLR (2018) Ma, X., et al.: Characterizing adversarial subspaces using local intrinsic dimensionality. In: ICLR (2018)
25.
Zurück zum Zitat Ma, X., et al.: Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recogn. 110, 107332 (2020)CrossRef Ma, X., et al.: Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recogn. 110, 107332 (2020)CrossRef
26.
Zurück zum Zitat Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)MATH Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)MATH
27.
Zurück zum Zitat Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: ICLR (2018) Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: ICLR (2018)
28.
Zurück zum Zitat Metzen, J.H., Genewein, T., Fischer, V., Bischoff, B.: On detecting adversarial perturbations. In: ICLR (2017) Metzen, J.H., Genewein, T., Fischer, V., Bischoff, B.: On detecting adversarial perturbations. In: ICLR (2017)
30.
Zurück zum Zitat Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: ASIA Computer and Communications Security, pp. 506–519 (2017) Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: ASIA Computer and Communications Security, pp. 506–519 (2017)
31.
Zurück zum Zitat Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to adversarial perturbations against deep neural networks. In: IEEE Symposium on Security and Privacy, pp. 582–597. IEEE (2016) Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to adversarial perturbations against deep neural networks. In: IEEE Symposium on Security and Privacy, pp. 582–597. IEEE (2016)
32.
Zurück zum Zitat Paschali, M., Conjeti, S., Navarro, F., Navab, N.: Generalizability vs. robustness: investigating medical imaging networks using adversarial examples. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 493–501. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_56CrossRef Paschali, M., Conjeti, S., Navarro, F., Navab, N.: Generalizability vs. robustness: investigating medical imaging networks using adversarial examples. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 493–501. Springer, Cham (2018). https://​doi.​org/​10.​1007/​978-3-030-00928-1_​56CrossRef
33.
Zurück zum Zitat Sabour, S., Cao, Y., Faghri, F., Fleet, D.J.: Adversarial manipulation of deep representations. In: IEEE Symposium on Security and Privacy (2016) Sabour, S., Cao, Y., Faghri, F., Fleet, D.J.: Adversarial manipulation of deep representations. In: IEEE Symposium on Security and Privacy (2016)
34.
Zurück zum Zitat Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015) Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)
35.
Zurück zum Zitat Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014) Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014)
36.
Zurück zum Zitat Taghanaki, S.A., Abhishek, K., Azizi, S., Hamarneh, G.: A kernelized manifold mapping to diminish the effect of adversarial perturbations. In: CVPR, pp. 11340–11349 (2019) Taghanaki, S.A., Abhishek, K., Azizi, S., Hamarneh, G.: A kernelized manifold mapping to diminish the effect of adversarial perturbations. In: CVPR, pp. 11340–11349 (2019)
37.
Zurück zum Zitat Tramer, F., Carlini, N., Brendel, W., Madry, A.: On adaptive attacks to adversarial example defenses. In: ICLR (2020) Tramer, F., Carlini, N., Brendel, W., Madry, A.: On adaptive attacks to adversarial example defenses. In: ICLR (2020)
38.
Zurück zum Zitat Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., McDaniel, P.: Ensemble adversarial training: attacks and defenses. In: ICLR (2018) Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., McDaniel, P.: Ensemble adversarial training: attacks and defenses. In: ICLR (2018)
39.
Zurück zum Zitat Xu, W., Evans, D., Qi, Y.: Feature squeezing: detecting adversarial examples in deep neural networks. In: Network and Distributed System Security Symposium (2017) Xu, W., Evans, D., Qi, Y.: Feature squeezing: detecting adversarial examples in deep neural networks. In: Network and Distributed System Security Symposium (2017)
41.
Zurück zum Zitat Yao, Q., Xiao, L., Liu, P., Zhou, S.K.: Label-free segmentation of COVID-19 lesions in lung CT. IEEE Trans. Med. Imaging (2020) Yao, Q., Xiao, L., Liu, P., Zhou, S.K.: Label-free segmentation of COVID-19 lesions in lung CT. IEEE Trans. Med. Imaging (2020)
42.
Zurück zum Zitat Zheng, Z., Hong, P.: Robust detection of adversarial attacks by modeling the intrinsic properties of deep neural networks. In: Advances in Neural Information Processing Systems, pp. 7913–7922 (2018) Zheng, Z., Hong, P.: Robust detection of adversarial attacks by modeling the intrinsic properties of deep neural networks. In: Advances in Neural Information Processing Systems, pp. 7913–7922 (2018)
43.
Zurück zum Zitat Zhou, S.K., et al.: A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises. Proc. IEEE 109(5), 820–838 (2021)CrossRef Zhou, S.K., et al.: A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises. Proc. IEEE 109(5), 820–838 (2021)CrossRef
44.
Zurück zum Zitat Zhou, S.K., Rueckert, D., Fichtinger, G.: Handbook of Medical Image Computing and Computer Assisted Intervention. Academic Press, Cambridge (2019) Zhou, S.K., Rueckert, D., Fichtinger, G.: Handbook of Medical Image Computing and Computer Assisted Intervention. Academic Press, Cambridge (2019)
Metadaten
Titel
A Hierarchical Feature Constraint to Camouflage Medical Adversarial Attacks
verfasst von
Qingsong Yao
Zecheng He
Yi Lin
Kai Ma
Yefeng Zheng
S. Kevin Zhou
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-87199-4_4