Skip to main content
Erschienen in: Journal of Scientific Computing 1/2018

15.12.2017

A Higher-Order Discontinuous Galerkin/Arbitrary Lagrangian Eulerian Partitioned Approach to Solving Fluid–Structure Interaction Problems with Incompressible, Viscous Fluids and Elastic Structures

verfasst von: Yifan Wang, Annalisa Quaini, Sunčica Čanić

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This manuscript presents a discontinuous Galerkin-based numerical method for solving fluid–structure interaction problems involving incompressible, viscous fluids. The fluid and structure are fully coupled via two sets of coupling conditions. The numerical approach is based on a high-order discontinuous Galerkin (with Interior Penalty) method, which is combined with the Arbitrary Lagrangian–Eulerian approach to deal with the motion of the fluid domain, which is not known a priori. Two strongly coupled partitioned schemes are considered to resolve the interaction between fluid and structure: the Dirichlet–Neumann and the Robin–Neumann schemes. The proposed numerical method is tested on a series of benchmark problems, and is applied to a fluid–structure interaction problem describing the flow of blood in a patient-specific aortic abdominal aneurysm before and after the insertion of a prosthesis known as stent graft. The proposed numerical approach provides sharp resolution of jump discontinuities in the pressure and normal stress across fluid–structure and structure–structure interfaces. It also provides a unified framework for solving fluid–structure interaction problems involving nonlinear structures, which may develop shock wave solutions that can be resolved using a unified discontinuous Galerkin-based approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)MathSciNetCrossRefMATH Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Astorino, M., Chouly, F., Fernández Varela, M.A.: Robin based semi-implicit coupling in fluid–structure interaction. SIAM J. Sci. Comput. 31, 4041–4065 (2009)MathSciNetCrossRefMATH Astorino, M., Chouly, F., Fernández Varela, M.A.: Robin based semi-implicit coupling in fluid–structure interaction. SIAM J. Sci. Comput. 31, 4041–4065 (2009)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Baaijens, F.P.T.: A fictitious domain/mortar element method for fluid–structure interaction. Int. J. Numer. Methods Fluids 35, 743–761 (2001)MathSciNetCrossRefMATH Baaijens, F.P.T.: A fictitious domain/mortar element method for fluid–structure interaction. Int. J. Numer. Methods Fluids 35, 743–761 (2001)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Badia, S., Nobile, F., Vergara, C.: Fluid–structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys. 227, 7027–7051 (2008)MathSciNetCrossRefMATH Badia, S., Nobile, F., Vergara, C.: Fluid–structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys. 227, 7027–7051 (2008)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Badia, S., Quaini, A., Quarteroni, A.: Modular vs. non-modular preconditioners for fluid–structure systems with large added-mass effect. Comput. Methods Appl. Mech. Eng. 197(49–50), 4216–4232 (2008)MathSciNetCrossRefMATH Badia, S., Quaini, A., Quarteroni, A.: Modular vs. non-modular preconditioners for fluid–structure systems with large added-mass effect. Comput. Methods Appl. Mech. Eng. 197(49–50), 4216–4232 (2008)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Badia, S., Quaini, A., Quarteroni, A.: Splitting methods based on algebraic factorization for fluid–structure interaction. SIAM J. Sci. Comput. 30(4), 1778–1805 (2008)MathSciNetCrossRefMATH Badia, S., Quaini, A., Quarteroni, A.: Splitting methods based on algebraic factorization for fluid–structure interaction. SIAM J. Sci. Comput. 30(4), 1778–1805 (2008)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Banks, J., Henshaw, W., Schwendeman, D.: An analysis of a new stable partitioned algorithm for FSI problems. Part I: incompressible flow and elastic solids. J. Comput. Phys. 269, 108–137 (2014)MathSciNetCrossRefMATH Banks, J., Henshaw, W., Schwendeman, D.: An analysis of a new stable partitioned algorithm for FSI problems. Part I: incompressible flow and elastic solids. J. Comput. Phys. 269, 108–137 (2014)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Banks, J., Henshaw, W., Schwendeman, D.: An analysis of a new stable partitioned algorithm for FSI problems. Part II: incompressible flow and structural shells. J. Comput. Phys. 268, 399–416 (2014)MathSciNetCrossRefMATH Banks, J., Henshaw, W., Schwendeman, D.: An analysis of a new stable partitioned algorithm for FSI problems. Part II: incompressible flow and structural shells. J. Comput. Phys. 268, 399–416 (2014)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Basting, S., Quaini, A., Glowinski, R., Canic, S.: An extended ale method for fluid–structure interaction problems with large structural displacements. J. Comput. Phys. 331, 312–336 (2017)MathSciNetCrossRefMATH Basting, S., Quaini, A., Glowinski, R., Canic, S.: An extended ale method for fluid–structure interaction problems with large structural displacements. J. Comput. Phys. 331, 312–336 (2017)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Bayraktar, E., Mierka, O., Turek, S.: Benchmark computations of 3d laminar flow around a cylinder with cfx, openfoam and featflow. Int. J. Comput. Sci. Eng. 7, 253–266 (2012)CrossRef Bayraktar, E., Mierka, O., Turek, S.: Benchmark computations of 3d laminar flow around a cylinder with cfx, openfoam and featflow. Int. J. Comput. Sci. Eng. 7, 253–266 (2012)CrossRef
12.
Zurück zum Zitat Bazilevs, Y., Calo, V.M., Zhang, Y., Hughes, T.J.R.: Isogeometric fluidstructure interaction analysis with applications to arterial blood flow. Comput. Mech. 38, 310–322 (2006)MathSciNetCrossRefMATH Bazilevs, Y., Calo, V.M., Zhang, Y., Hughes, T.J.R.: Isogeometric fluidstructure interaction analysis with applications to arterial blood flow. Comput. Mech. 38, 310–322 (2006)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Bazilevs, Y., Hsu, M.C., Zhang, Y., Wang, W., Liang, X., Kvamsdal, T., Brekken, R., Isaksen, J.G.: A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput. Mech. 46, 3–16 (2010)MathSciNetCrossRefMATH Bazilevs, Y., Hsu, M.C., Zhang, Y., Wang, W., Liang, X., Kvamsdal, T., Brekken, R., Isaksen, J.G.: A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput. Mech. 46, 3–16 (2010)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Bukac, M., Canic, S.: Longitudinal displacement in viscoelastic arteries: a novel fluid–structure interaction computational model, and experimental validation. J. Math. Biosci. Eng. 10(2), 258–388 (2013)MathSciNetMATH Bukac, M., Canic, S.: Longitudinal displacement in viscoelastic arteries: a novel fluid–structure interaction computational model, and experimental validation. J. Math. Biosci. Eng. 10(2), 258–388 (2013)MathSciNetMATH
15.
Zurück zum Zitat Bukac, M., Canic, S., Glowinski, R., Muha, B., Quaini, A.: A modular, operator-splitting scheme for fluid–structure interaction problems with thick structures. Int. J. Numer. Methods Fluids 74(8), 577–604 (2014)MathSciNetCrossRef Bukac, M., Canic, S., Glowinski, R., Muha, B., Quaini, A.: A modular, operator-splitting scheme for fluid–structure interaction problems with thick structures. Int. J. Numer. Methods Fluids 74(8), 577–604 (2014)MathSciNetCrossRef
16.
Zurück zum Zitat Bukac, M., Canic, S., Glowinski, R., Tambaca, J., Quaini, A.: Fluid–structure interaction in blood flow capturing non-zero longitudinal structure displacement. J. Comput. Phys. 235, 515–541 (2013)MathSciNetCrossRef Bukac, M., Canic, S., Glowinski, R., Tambaca, J., Quaini, A.: Fluid–structure interaction in blood flow capturing non-zero longitudinal structure displacement. J. Comput. Phys. 235, 515–541 (2013)MathSciNetCrossRef
17.
Zurück zum Zitat Bukac, M., Canic, S., Muha, B.: A partitioned scheme for fluid–composite structure interaction problems. J. Comput. Phys. 281, 493–517 (2015)MathSciNetCrossRefMATH Bukac, M., Canic, S., Muha, B.: A partitioned scheme for fluid–composite structure interaction problems. J. Comput. Phys. 281, 493–517 (2015)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Bukac, M., Muha, B.: Stability and convergence analysis of the kinematically coupled scheme for fluid–structure interaction. SIAM J. Numer. Anal. 54(5), 3032–3061 (2016)MathSciNetCrossRefMATH Bukac, M., Muha, B.: Stability and convergence analysis of the kinematically coupled scheme for fluid–structure interaction. SIAM J. Numer. Anal. 54(5), 3032–3061 (2016)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Canic, S., Muha, B., Bukac, M.: Fluid–structure interaction in hemodynamics: modeling, analysis, and numerical simulation. In: Bodnar, T., Galdi, G.P., Necasova, S. (eds.) Fluid–Structure Interaction and Biomedical Applications. Advances in Mathematical Fluid Mechanics. Birkhauser, Basel (2014) Canic, S., Muha, B., Bukac, M.: Fluid–structure interaction in hemodynamics: modeling, analysis, and numerical simulation. In: Bodnar, T., Galdi, G.P., Necasova, S. (eds.) Fluid–Structure Interaction and Biomedical Applications. Advances in Mathematical Fluid Mechanics. Birkhauser, Basel (2014)
20.
Zurück zum Zitat Canić, S., Muha, B., Bukač, M.: Stability of the kinematically coupled \(\beta \)-scheme for fluid–structure interaction problems in hemodynamics. J. Numer. Anal. Model. 12(1), 54–80 (2015)MathSciNetMATH Canić, S., Muha, B., Bukač, M.: Stability of the kinematically coupled \(\beta \)-scheme for fluid–structure interaction problems in hemodynamics. J. Numer. Anal. Model. 12(1), 54–80 (2015)MathSciNetMATH
21.
Zurück zum Zitat Canic, S., Tambača, J., Guidoboni, G., Mikelić, A., Hartley, Craig J., Rosenstrauch, Doreen: Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow. SIAM J. Appl. Math. 67(1), 164–193 (2006)MathSciNetCrossRefMATH Canic, S., Tambača, J., Guidoboni, G., Mikelić, A., Hartley, Craig J., Rosenstrauch, Doreen: Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow. SIAM J. Appl. Math. 67(1), 164–193 (2006)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Causin, P., Gerbeau, J.F., Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput. Methods Appl. Mech. Eng. 194(42–44), 4506–4527 (2005)MathSciNetCrossRefMATH Causin, P., Gerbeau, J.F., Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput. Methods Appl. Mech. Eng. 194(42–44), 4506–4527 (2005)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Cervera, M., Codina, R., Galindo, M.: On the computational efficiency and implementation of block-iterative algorithms for nonlinear coupled problems. Eng. Comput. 13(6), 4–30 (1996)CrossRefMATH Cervera, M., Codina, R., Galindo, M.: On the computational efficiency and implementation of block-iterative algorithms for nonlinear coupled problems. Eng. Comput. 13(6), 4–30 (1996)CrossRefMATH
24.
Zurück zum Zitat Cesenek, J., Feistauer, M., Kosik, A.: An arbitrary Lagrangian Eulerian discontinuous Galerkin method for simulations of flows over variable geometries. J. Fluids Struct. 26, 312–329 (2010)CrossRef Cesenek, J., Feistauer, M., Kosik, A.: An arbitrary Lagrangian Eulerian discontinuous Galerkin method for simulations of flows over variable geometries. J. Fluids Struct. 26, 312–329 (2010)CrossRef
25.
Zurück zum Zitat Charles, L.A., Jeffrey, W.R., Edward, I.B., Robert, A.P.: Experimental investigation of steady flow in rigid models of abdominal aortic aneurysms. Ann. Biomed. Eng. 23(1), 29–39 (1995)CrossRef Charles, L.A., Jeffrey, W.R., Edward, I.B., Robert, A.P.: Experimental investigation of steady flow in rigid models of abdominal aortic aneurysms. Ann. Biomed. Eng. 23(1), 29–39 (1995)CrossRef
26.
Zurück zum Zitat Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier Stokes equations. Math. Comput. 74, 1067–1095 (2005)MathSciNetCrossRefMATH Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier Stokes equations. Math. Comput. 74, 1067–1095 (2005)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Cockburn, B., Rhebergen, S.: A spacetime hybridizable discontinuous Galerkin method for incompressible flows on deforming domains. J. Comput. Phys. 231, 4185–4204 (2012)MathSciNetCrossRefMATH Cockburn, B., Rhebergen, S.: A spacetime hybridizable discontinuous Galerkin method for incompressible flows on deforming domains. J. Comput. Phys. 231, 4185–4204 (2012)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Cockburn, B., Shu, C.W.: The local discontinuous Galerkin finite element method for convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)MathSciNetCrossRefMATH Cockburn, B., Shu, C.W.: The local discontinuous Galerkin finite element method for convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Cottet, G.H., Maitre, E., Milcent, T.: Eulerian formulation and level set models for incompressible fluid–structure interaction. Math. Model. Numer. Anal. 42(3), 471–492 (2008)MathSciNetCrossRefMATH Cottet, G.H., Maitre, E., Milcent, T.: Eulerian formulation and level set models for incompressible fluid–structure interaction. Math. Model. Numer. Anal. 42(3), 471–492 (2008)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Deparis, S., Discacciati, M., Fourestey, G., Quarteroni, A.: Fluid–structure algorithms based on Steklov–Poincaré operators. Comput. Methods Appl. Mech. Eng. 195, 5797–5812 (2006)CrossRefMATH Deparis, S., Discacciati, M., Fourestey, G., Quarteroni, A.: Fluid–structure algorithms based on Steklov–Poincaré operators. Comput. Methods Appl. Mech. Eng. 195, 5797–5812 (2006)CrossRefMATH
31.
Zurück zum Zitat Deparis, S., Fernandez, M.A., Formaggia, L.: Acceleration of a fixed point algorithm for a fluid–structure interaction using transpiration condition. Math. Model. Numer. Anal. 37(4), 601–616 (2003)MathSciNetCrossRefMATH Deparis, S., Fernandez, M.A., Formaggia, L.: Acceleration of a fixed point algorithm for a fluid–structure interaction using transpiration condition. Math. Model. Numer. Anal. 37(4), 601–616 (2003)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Donéa, J.: A Taylor–Galerkin method for convective transport problems. In: Numerical Methods in Laminar and Turbulent Flow (Seattle, Wash., 1983), pp. 941–950. Pineridge, Swansea (1983) Donéa, J.: A Taylor–Galerkin method for convective transport problems. In: Numerical Methods in Laminar and Turbulent Flow (Seattle, Wash., 1983), pp. 941–950. Pineridge, Swansea (1983)
34.
Zurück zum Zitat Fang, H., Wang, Z., Lin, Z., Liu, M.: Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels. Phys. Rev. E 65, 051925.1–051925.11 (2002)CrossRef Fang, H., Wang, Z., Lin, Z., Liu, M.: Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels. Phys. Rev. E 65, 051925.1–051925.11 (2002)CrossRef
35.
Zurück zum Zitat Farhat, C., Lesoinne, M.: Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations. Comput. Methods Appl. Mech. Eng. 134, 7190 (1996)MATH Farhat, C., Lesoinne, M.: Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations. Comput. Methods Appl. Mech. Eng. 134, 7190 (1996)MATH
37.
Zurück zum Zitat Feng, Z.-G., Michaelides, E.E.: The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problem. J. Comp. Phys. 195(2), 602–628 (2004)CrossRefMATH Feng, Z.-G., Michaelides, E.E.: The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problem. J. Comp. Phys. 195(2), 602–628 (2004)CrossRefMATH
38.
Zurück zum Zitat Fernández, M.A., Gerbeau, J.F., Grandmont, C.: A projection algorithm for fluid–structure interaction problems with strong added-mass effect. C. R. Math. 342(4), 279–284 (2006)MathSciNetCrossRefMATH Fernández, M.A., Gerbeau, J.F., Grandmont, C.: A projection algorithm for fluid–structure interaction problems with strong added-mass effect. C. R. Math. 342(4), 279–284 (2006)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Fernández, Miguel A.: Incremental displacement-correction schemes for incompressible fluid–structure interaction. Numer. Math. 123(1), 21–65 (2013)MathSciNetCrossRefMATH Fernández, Miguel A.: Incremental displacement-correction schemes for incompressible fluid–structure interaction. Numer. Math. 123(1), 21–65 (2013)MathSciNetCrossRefMATH
40.
Zurück zum Zitat Ferrer, E., Willden, R.H.J.: A high order discontinuous Galerkin finite element solver for the incompressible Navier–Stokes equations. Comput. Fluids 46, 224–230 (2011)MathSciNetCrossRefMATH Ferrer, E., Willden, R.H.J.: A high order discontinuous Galerkin finite element solver for the incompressible Navier–Stokes equations. Comput. Fluids 46, 224–230 (2011)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Figueroa, C., Vignon-Clementel, I., Jansen, K.E., Hughes, T., Taylor, C.: A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195, 5685–5706 (2006)MathSciNetCrossRefMATH Figueroa, C., Vignon-Clementel, I., Jansen, K.E., Hughes, T., Taylor, C.: A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195, 5685–5706 (2006)MathSciNetCrossRefMATH
42.
Zurück zum Zitat Finol, E.A., Amon, C.H.: Blood flow in abdominal aortic aneurysms: pulsatile flow hemodynamics. J. Biomech. Eng. 123(5), 474–84 (2001)CrossRef Finol, E.A., Amon, C.H.: Blood flow in abdominal aortic aneurysms: pulsatile flow hemodynamics. J. Biomech. Eng. 123(5), 474–84 (2001)CrossRef
43.
Zurück zum Zitat Fogelson, A.L., Guy, R.D.: Platelet-wall interactions in continuum models of platelet thrombosis: formulation and numerical solution. Math. Med. Biol. 21, 293–334 (2004)CrossRefMATH Fogelson, A.L., Guy, R.D.: Platelet-wall interactions in continuum models of platelet thrombosis: formulation and numerical solution. Math. Med. Biol. 21, 293–334 (2004)CrossRefMATH
44.
Zurück zum Zitat Formaggia, L., Gerbeau, J., Nobile, F., Quarteroni, A.: On the coupling of 3d and 1d Navier–Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 19, 561–582 (2001)MathSciNetCrossRefMATH Formaggia, L., Gerbeau, J., Nobile, F., Quarteroni, A.: On the coupling of 3d and 1d Navier–Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 19, 561–582 (2001)MathSciNetCrossRefMATH
45.
Zurück zum Zitat Gerbeau, J.F., Vidrascu, M.: A quasi-Newton algorithm based on a reduced model for fluid–structure interactions problems in blood flows. Math. Model. Numer. Anal. 37(4), 631–648 (2003)MathSciNetCrossRefMATH Gerbeau, J.F., Vidrascu, M.: A quasi-Newton algorithm based on a reduced model for fluid–structure interactions problems in blood flows. Math. Model. Numer. Anal. 37(4), 631–648 (2003)MathSciNetCrossRefMATH
46.
Zurück zum Zitat Gottlieb, D., Orszag, S.A.: Numerical analysis of spectral methods: theory and applications. In: Regional Conference Series in Applied Mathematics (1977) Gottlieb, D., Orszag, S.A.: Numerical analysis of spectral methods: theory and applications. In: Regional Conference Series in Applied Mathematics (1977)
47.
Zurück zum Zitat Griffith, B.E., Hornung, R.D., McQueen, D.M., Peskin, C.S.: An adaptive, formally second order accurate version of the immersed boundary method. J. Comput. Phys. 223, 10–49 (2007)MathSciNetCrossRefMATH Griffith, B.E., Hornung, R.D., McQueen, D.M., Peskin, C.S.: An adaptive, formally second order accurate version of the immersed boundary method. J. Comput. Phys. 223, 10–49 (2007)MathSciNetCrossRefMATH
48.
Zurück zum Zitat Grandmont, C., Farhat, C., Geuzaine, P.: The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids. J. Comput. Phys. 174, 669–694 (2001)MathSciNetCrossRefMATH Grandmont, C., Farhat, C., Geuzaine, P.: The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids. J. Comput. Phys. 174, 669–694 (2001)MathSciNetCrossRefMATH
49.
Zurück zum Zitat Guidoboni, G., Cavallini, N., Glowinski, R., Canic, S., Lapin, S.: A kinematically coupled time-splitting scheme for fluid–structure interaction in blood flow. Appl. Math. Lett. 22(5), 684–688 (2009)MathSciNetCrossRefMATH Guidoboni, G., Cavallini, N., Glowinski, R., Canic, S., Lapin, S.: A kinematically coupled time-splitting scheme for fluid–structure interaction in blood flow. Appl. Math. Lett. 22(5), 684–688 (2009)MathSciNetCrossRefMATH
50.
Zurück zum Zitat Guidoboni, G., Glowinski, R., Cavallini, N., Canic, S.: Stable loosely-coupled-type algorithm for fluid–structure interaction in blood flow. J. Comput. Phys. 228(18), 6916–6937 (2009)MathSciNetCrossRefMATH Guidoboni, G., Glowinski, R., Cavallini, N., Canic, S.: Stable loosely-coupled-type algorithm for fluid–structure interaction in blood flow. J. Comput. Phys. 228(18), 6916–6937 (2009)MathSciNetCrossRefMATH
51.
Zurück zum Zitat Hesthaven, J., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2008)CrossRefMATH Hesthaven, J., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2008)CrossRefMATH
52.
Zurück zum Zitat Hughes, T.J.R., Liu, W.K., Zimmermann, T.K.: Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29(3), 329–349 (1981)MathSciNetCrossRefMATH Hughes, T.J.R., Liu, W.K., Zimmermann, T.K.: Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29(3), 329–349 (1981)MathSciNetCrossRefMATH
53.
Zurück zum Zitat Hundertmark-Zaušková, A., Lukáčová-Medvidová, M., Rusnáková, G.: Fluid–structure interaction for shear-dependent non-Newtonian fluids. In: Topics in Mathematical Modeling and Analysis, vol. 7 J. Nečas Cent. Math. Model. Lect. Notes, pp. 109–158. Matfyzpress, Prague (2012) Hundertmark-Zaušková, A., Lukáčová-Medvidová, M., Rusnáková, G.: Fluid–structure interaction for shear-dependent non-Newtonian fluids. In: Topics in Mathematical Modeling and Analysis, vol. 7 J. Nečas Cent. Math. Model. Lect. Notes, pp. 109–158. Matfyzpress, Prague (2012)
54.
Zurück zum Zitat Israeli, M., Karniadakis, G., Orszag, S.: High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414–443 (1991)MathSciNetCrossRefMATH Israeli, M., Karniadakis, G., Orszag, S.: High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414–443 (1991)MathSciNetCrossRefMATH
55.
Zurück zum Zitat John, V.: Reference values for drag and lift of a two dimensional time-dependent flow around a cylinder. Int. J. Numer. Methods Fluids 44, 777–788 (2004)CrossRefMATH John, V.: Reference values for drag and lift of a two dimensional time-dependent flow around a cylinder. Int. J. Numer. Methods Fluids 44, 777–788 (2004)CrossRefMATH
56.
Zurück zum Zitat Karniadakis, G., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press, Oxford (2005)CrossRefMATH Karniadakis, G., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press, Oxford (2005)CrossRefMATH
57.
Zurück zum Zitat Kovasznay, L.I.G.: Laminar flow behind a two-dimensional grid. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 44, No. 1, pp. 5862 (1948) Kovasznay, L.I.G.: Laminar flow behind a two-dimensional grid. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 44, No. 1, pp. 5862 (1948)
58.
Zurück zum Zitat Krafczyk, M., Cerrolaza, M., Schulz, M., Rank, E.: Analysis of 3D transient blood flow passing through an artificial aortic valve by lattice-Boltzmann methods. J. Biomech. 31(5), 453–462 (1998)CrossRef Krafczyk, M., Cerrolaza, M., Schulz, M., Rank, E.: Analysis of 3D transient blood flow passing through an artificial aortic valve by lattice-Boltzmann methods. J. Biomech. 31(5), 453–462 (1998)CrossRef
59.
Zurück zum Zitat Krafczyk, M., Tolke, J., Rank, E., Schulz, M.: Two-dimensional simulation of fluid–structure interaction using lattice-Boltzmann methods. Comput. Struct. 79, 2031–2037 (2001)CrossRef Krafczyk, M., Tolke, J., Rank, E., Schulz, M.: Two-dimensional simulation of fluid–structure interaction using lattice-Boltzmann methods. Comput. Struct. 79, 2031–2037 (2001)CrossRef
60.
Zurück zum Zitat Küttler, U., Wall, W.A.: Fixed-point fluid-structure interaction solvers with dynamic relaxation. Computational Mechanics 43(1), 61–72 (2008)CrossRefMATH Küttler, U., Wall, W.A.: Fixed-point fluid-structure interaction solvers with dynamic relaxation. Computational Mechanics 43(1), 61–72 (2008)CrossRefMATH
61.
Zurück zum Zitat Lim, S., Peskin, C.S.: Simulations of the whirling instability by the immersed boundary method. SIAM J. Sci. Comput. 25, 2066–2083 (2004)MathSciNetCrossRefMATH Lim, S., Peskin, C.S.: Simulations of the whirling instability by the immersed boundary method. SIAM J. Sci. Comput. 25, 2066–2083 (2004)MathSciNetCrossRefMATH
62.
Zurück zum Zitat Lomtev, I., Kirby, R.M., Karniadakis, G.E.: A discontinuous Galerkin ALE method for compressible viscous flows in moving domains. J. Comput. Phys. 155, 128–159 (1999)MathSciNetCrossRefMATH Lomtev, I., Kirby, R.M., Karniadakis, G.E.: A discontinuous Galerkin ALE method for compressible viscous flows in moving domains. J. Comput. Phys. 155, 128–159 (1999)MathSciNetCrossRefMATH
63.
Zurück zum Zitat Matthies, H., Steindorf, J.: Numerical efficiency of different partitioned methods for fluid–structure interaction. Z. Angew. Math. Mech. 2(80), 557–558 (2000)MATH Matthies, H., Steindorf, J.: Numerical efficiency of different partitioned methods for fluid–structure interaction. Z. Angew. Math. Mech. 2(80), 557–558 (2000)MATH
64.
Zurück zum Zitat Miller, L.A., Peskin, C.S.: A computational fluid dynamics study of ’clap and fling’ in the smallest insects. J. Exp. Biol. 208(2), 195–212 (2005)CrossRef Miller, L.A., Peskin, C.S.: A computational fluid dynamics study of ’clap and fling’ in the smallest insects. J. Exp. Biol. 208(2), 195–212 (2005)CrossRef
65.
Zurück zum Zitat Mok, D.P., Wall, W.A.: Partitioned analysis schemes for transient interaction of incompressible flows and nonlinear flexible structures. In: Wall, W.A., Bletzinger, K.U., Schweizerhof, K. (eds.) Trends in Computational Structural Mechanics. CIMNE, Barcelona (2001) Mok, D.P., Wall, W.A.: Partitioned analysis schemes for transient interaction of incompressible flows and nonlinear flexible structures. In: Wall, W.A., Bletzinger, K.U., Schweizerhof, K. (eds.) Trends in Computational Structural Mechanics. CIMNE, Barcelona (2001)
66.
Zurück zum Zitat Nobile, F.: Numerical approximation of fluid–structure interaction problems with application to hemodynamics. Ph.D. thesis EPFL (2001) Nobile, F.: Numerical approximation of fluid–structure interaction problems with application to hemodynamics. Ph.D. thesis EPFL (2001)
67.
Zurück zum Zitat Nobile, F., Vergara, C.: An effective fluid–structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J. Sci. Comput. 30, 731–763 (2008)MathSciNetCrossRefMATH Nobile, F., Vergara, C.: An effective fluid–structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J. Sci. Comput. 30, 731–763 (2008)MathSciNetCrossRefMATH
68.
Zurück zum Zitat Ouriel, K., Green, R.M., Donayre, C., Shortell, C.K., Elliott, J., DeWeese, J.A.: An evaluation of new methods of expressing aortic aneurysm size: relationship to rupture. J. Vasc. Surg. 15, 12–20 (1992)CrossRef Ouriel, K., Green, R.M., Donayre, C., Shortell, C.K., Elliott, J., DeWeese, J.A.: An evaluation of new methods of expressing aortic aneurysm size: relationship to rupture. J. Vasc. Surg. 15, 12–20 (1992)CrossRef
69.
Zurück zum Zitat Peattie, R.A., Asbury, C.L., Bluth, E.I., Ruberti, J.W.: Steady flow in models of abdominal aortic aneurysms. part I: investigation of the velocity patterns. J. Ultrasound Med. 15(10), 679–88 (1996)CrossRef Peattie, R.A., Asbury, C.L., Bluth, E.I., Ruberti, J.W.: Steady flow in models of abdominal aortic aneurysms. part I: investigation of the velocity patterns. J. Ultrasound Med. 15(10), 679–88 (1996)CrossRef
70.
Zurück zum Zitat Peattie, R.A., Bluth, E.I.: Experimental study of pulsatile flows in models of abdominal aortic aneurysms. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 20, No. 1 (1998) Peattie, R.A., Bluth, E.I.: Experimental study of pulsatile flows in models of abdominal aortic aneurysms. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 20, No. 1 (1998)
71.
Zurück zum Zitat Persson, P.O., Bonet, J., Peraire, J.: Discontinuous Galerkin solution of the Navier–Stokes equations on deformable domains. Comput. Methods Appl. Mech. Eng. 198, 1585–1595 (2009)CrossRefMATH Persson, P.O., Bonet, J., Peraire, J.: Discontinuous Galerkin solution of the Navier–Stokes equations on deformable domains. Comput. Methods Appl. Mech. Eng. 198, 1585–1595 (2009)CrossRefMATH
72.
Zurück zum Zitat Peskin, C., McQueen, D.M.: A three-dimensional computational method for blood flow in the heart I. Immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys. 81(2), 372–405 (1989)MathSciNetCrossRefMATH Peskin, C., McQueen, D.M.: A three-dimensional computational method for blood flow in the heart I. Immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys. 81(2), 372–405 (1989)MathSciNetCrossRefMATH
74.
Zurück zum Zitat Piatkowski, M., Müthing, S., Bastian, P.: A stable and high-order accurate discontinuous Galerkin based splitting method for the incompressible Navier–Stokes equations. arXiv:1612.00657v1 [math.NA] (2016) Piatkowski, M., Müthing, S., Bastian, P.: A stable and high-order accurate discontinuous Galerkin based splitting method for the incompressible Navier–Stokes equations. arXiv:​1612.​00657v1 [math.NA] (2016)
75.
Zurück zum Zitat Quaini, A.: Algorithms for fluid–structure interaction problems arising in hemodynamics. Ph.D. thesis EPFL (2009) Quaini, A.: Algorithms for fluid–structure interaction problems arising in hemodynamics. Ph.D. thesis EPFL (2009)
76.
Zurück zum Zitat Quaini, A., Quarteroni, A.: A semi-implicit approach for fluid–structure interaction based on an algebraic fractional step method. Math. Models Methods Appl. Sci. 17, 957–985 (2007)MathSciNetCrossRefMATH Quaini, A., Quarteroni, A.: A semi-implicit approach for fluid–structure interaction based on an algebraic fractional step method. Math. Models Methods Appl. Sci. 17, 957–985 (2007)MathSciNetCrossRefMATH
77.
Zurück zum Zitat Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer, Berlin (2007)MATH Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer, Berlin (2007)MATH
78.
Zurück zum Zitat Quarteroni, A., Tuveri, M., Veneziani, A.: Computational vascular fluid dynamics: problems. Models Methods. Comput. Vis. Sci. 2, 163–197 (2000)CrossRefMATH Quarteroni, A., Tuveri, M., Veneziani, A.: Computational vascular fluid dynamics: problems. Models Methods. Comput. Vis. Sci. 2, 163–197 (2000)CrossRefMATH
79.
Zurück zum Zitat Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1997)MATH Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1997)MATH
80.
Zurück zum Zitat Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications, Oxford (1999)MATH Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications, Oxford (1999)MATH
81.
Zurück zum Zitat Schäfer, M., Turek, S., Durst, F., Krause, E., Rannacher, R.: Benchmark computations of laminar flow around a cylinder. In: Hirschel, E.H. (ed.) Flow Simulation with High-Performance Computers II. Notes on Numerical Fluid Mechanics (NNFM), vol 48. Vieweg+Teubner Verlag (1996) Schäfer, M., Turek, S., Durst, F., Krause, E., Rannacher, R.: Benchmark computations of laminar flow around a cylinder. In: Hirschel, E.H. (ed.) Flow Simulation with High-Performance Computers II. Notes on Numerical Fluid Mechanics (NNFM), vol 48. Vieweg+Teubner Verlag (1996)
82.
Zurück zum Zitat Shahbazi, K.: An explicit expression for the penalty parameter of the interior penalty method. J. Comput. Phys. 205, 401–407 (2005)CrossRefMATH Shahbazi, K.: An explicit expression for the penalty parameter of the interior penalty method. J. Comput. Phys. 205, 401–407 (2005)CrossRefMATH
83.
Zurück zum Zitat Shahbazi, K., Fischer, P.F., Ethier, C.R.: A high-order discontinuous Galerkin method for the unsteady incompressible Navier–Stokes equations. J. Comput. Phys. 222, 391–407 (2007)MathSciNetCrossRefMATH Shahbazi, K., Fischer, P.F., Ethier, C.R.: A high-order discontinuous Galerkin method for the unsteady incompressible Navier–Stokes equations. J. Comput. Phys. 222, 391–407 (2007)MathSciNetCrossRefMATH
84.
Zurück zum Zitat Soudah, E., Ng, F.Y.K., Loong, T., Bordone, M., Pua, U., Narayanan, S.: CFD modelling of abdominal aortic aneurysm on hemodynamic loads using a realistic geometry with CT. Comput. Math. Methods Med. Article ID 472564 (2013) Soudah, E., Ng, F.Y.K., Loong, T., Bordone, M., Pua, U., Narayanan, S.: CFD modelling of abdominal aortic aneurysm on hemodynamic loads using a realistic geometry with CT. Comput. Math. Methods Med. Article ID 472564 (2013)
85.
Zurück zum Zitat van Loon, R., Anderson, P., de Hart, J., Baaijens, F.: A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves. Int. J. Numer. Methods Fluids 46, 533–544 (2004)CrossRefMATH van Loon, R., Anderson, P., de Hart, J., Baaijens, F.: A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves. Int. J. Numer. Methods Fluids 46, 533–544 (2004)CrossRefMATH
86.
Zurück zum Zitat Zhang, M., Shu, C.W.: An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations. Math. Models Methods Appl. Sci. 13, 395–413 (2003)MathSciNetCrossRefMATH Zhang, M., Shu, C.W.: An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations. Math. Models Methods Appl. Sci. 13, 395–413 (2003)MathSciNetCrossRefMATH
87.
Zurück zum Zitat Zhao, S.Z., Xu, X.Y., Collins, M.W.: The numerical analysis of fluid–solid interactions for blood flow in arterial structures part 2: development of coupled fluid–solid algorithms. Proc. Inst. Mech. Eng. Part H 212, 241–252 (1998)CrossRef Zhao, S.Z., Xu, X.Y., Collins, M.W.: The numerical analysis of fluid–solid interactions for blood flow in arterial structures part 2: development of coupled fluid–solid algorithms. Proc. Inst. Mech. Eng. Part H 212, 241–252 (1998)CrossRef
Metadaten
Titel
A Higher-Order Discontinuous Galerkin/Arbitrary Lagrangian Eulerian Partitioned Approach to Solving Fluid–Structure Interaction Problems with Incompressible, Viscous Fluids and Elastic Structures
verfasst von
Yifan Wang
Annalisa Quaini
Sunčica Čanić
Publikationsdatum
15.12.2017
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2018
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0629-y

Weitere Artikel der Ausgabe 1/2018

Journal of Scientific Computing 1/2018 Zur Ausgabe

Premium Partner