Skip to main content

2017 | OriginalPaper | Buchkapitel

3. A Hybrid RANS and Kinematic Simulation of Wind Load Effects on Full-Scale Tall Buildings

verfasst von : Mingfeng Huang

Erschienen in: High-Rise Buildings under Multi-Hazard Environment

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Up till recent years, predicting wind loads on full-scale tall buildings using Large Eddy Simulation (LES) is still impractical due to a prohibitively large amount of meshes required, especially in the vicinity of the near-wall layers of the turbulent flow. A hybrid approach is proposed for solving pressure fluctuations of wind flows around tall buildings based on the Reynolds Averaged Navier–Stokes (RANS) simulation, which requires coarse meshes, and the mesh-free Kinematic Simulation (KS). While RANS is commonly used to provide mean flow characteristics of turbulent airflows, KS is able to generate an artificial fluctuating velocity field that satisfies both the flow continuity condition and the specific energy spectra of atmospheric turbulence. The kinetic energy is split along three orthogonal directions to account for anisotropic effects in atmospheric boundary layer. The periodic vortex shedding effects can partially be incorporated by the use of an energy density function peaked at a Strouhal wave number. The pressure fluctuations can then be obtained by solving the Poisson equation corresponding to the generated velocity fluctuation field by the KS. An example of the CAARC building demonstrates the efficiency of the synthesized approach and shows good agreements with the results of LES and wind tunnel measurements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Australian/New Zealand Standard. (2002). Structural design actions: Wind actions. AS1170.2:2002. Standards Australia: Sydney. Australian/New Zealand Standard. (2002). Structural design actions: Wind actions. AS1170.2:2002. Standards Australia: Sydney.
Zurück zum Zitat Architectural Institute of Japan Recommendations. (2005). Guide for numerical prediction of wind loads on buildings. Tokyo, Japan. Architectural Institute of Japan Recommendations. (2005). Guide for numerical prediction of wind loads on buildings. Tokyo, Japan.
Zurück zum Zitat Bechara, W., Bailly, C., & Lafon, P. (1994). Stochastic approach to noise modeling for free turbulent flows. AIAA Journal, 32, 455–463.CrossRefMATH Bechara, W., Bailly, C., & Lafon, P. (1994). Stochastic approach to noise modeling for free turbulent flows. AIAA Journal, 32, 455–463.CrossRefMATH
Zurück zum Zitat Cao, S., Tamura, Y., Kikuchi, N., Saito, M., Nakayama, I., & Matsuzaki, Y. (2009). Wind characteristics of a strong typhoon. Journal of Wind Engineering and Industrial Aerodynamics, 97(1), 11–21.CrossRef Cao, S., Tamura, Y., Kikuchi, N., Saito, M., Nakayama, I., & Matsuzaki, Y. (2009). Wind characteristics of a strong typhoon. Journal of Wind Engineering and Industrial Aerodynamics, 97(1), 11–21.CrossRef
Zurück zum Zitat Carassale, L., & Solar, G. (2006). Monte Carlo simulation of wind velocity fields on complex structures. Journal of Wind Engineering and Industrial Aerodynamics, 94, 323–339.CrossRef Carassale, L., & Solar, G. (2006). Monte Carlo simulation of wind velocity fields on complex structures. Journal of Wind Engineering and Industrial Aerodynamics, 94, 323–339.CrossRef
Zurück zum Zitat Cermak, J. E. (2003). Wind-tunnel development and trends in applications to civil engineering. Journal of Wind Engineering and Industrial Aerodynamics, 91, 355–370.CrossRef Cermak, J. E. (2003). Wind-tunnel development and trends in applications to civil engineering. Journal of Wind Engineering and Industrial Aerodynamics, 91, 355–370.CrossRef
Zurück zum Zitat Durbin, P. A. (1993). Reynolds stress model for near-wall turbulence. Journal of Fluid Mechanics, 249, 465–498.CrossRef Durbin, P. A. (1993). Reynolds stress model for near-wall turbulence. Journal of Fluid Mechanics, 249, 465–498.CrossRef
Zurück zum Zitat ESDU International plc. (2001). Characteristics of atmospheric turbulence near the ground. Data Item: Engineering Sciences Data Unit. 85020. ESDU International plc. (2001). Characteristics of atmospheric turbulence near the ground. Data Item: Engineering Sciences Data Unit. 85020.
Zurück zum Zitat Fung, J. C. H., & Perkins, R. J. (2008). Dispersion modeling by kinematic simulation: cloud dispersion model. Fluid Dynamics Research, 40(4), 273–309.MathSciNetCrossRefMATH Fung, J. C. H., & Perkins, R. J. (2008). Dispersion modeling by kinematic simulation: cloud dispersion model. Fluid Dynamics Research, 40(4), 273–309.MathSciNetCrossRefMATH
Zurück zum Zitat Fung, J. C. H., Hunt, J. C. R., Malik, N. A., & Perkins, R. J. (1992). Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes. Journal of Fluid Mechanics, 236, 281–318.MathSciNetCrossRefMATH Fung, J. C. H., Hunt, J. C. R., Malik, N. A., & Perkins, R. J. (1992). Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes. Journal of Fluid Mechanics, 236, 281–318.MathSciNetCrossRefMATH
Zurück zum Zitat Girimaji, S. S. (2000). Pressure-strain correlation modelling of complex turbulent flows. Journal of Fluid Mechanics, 422, 91–123.CrossRefMATH Girimaji, S. S. (2000). Pressure-strain correlation modelling of complex turbulent flows. Journal of Fluid Mechanics, 422, 91–123.CrossRefMATH
Zurück zum Zitat Gurley, K. R., Tognarelli, M. A., & Kareem, A. (1997). Analysis and simulation tools for wind engineering. Probabilistic Engineering Mechanics, 12(1), 9–31.CrossRef Gurley, K. R., Tognarelli, M. A., & Kareem, A. (1997). Analysis and simulation tools for wind engineering. Probabilistic Engineering Mechanics, 12(1), 9–31.CrossRef
Zurück zum Zitat Hanjalic, K., & Kenjeres, S. (2008). Some developments in turbulence modeling for wind and environmental engineering. Journal of Wind Engineering and Industrial Aerodynamics, 96(10–11), 1537–1570.CrossRef Hanjalic, K., & Kenjeres, S. (2008). Some developments in turbulence modeling for wind and environmental engineering. Journal of Wind Engineering and Industrial Aerodynamics, 96(10–11), 1537–1570.CrossRef
Zurück zum Zitat Harlow, F. H., & Welch, J. E. (1965). Numerical calculations of time dependent viscous incompressible flow of fluid with a free surface. Physics of Fluids, 8(12), 2182–2189.CrossRefMATH Harlow, F. H., & Welch, J. E. (1965). Numerical calculations of time dependent viscous incompressible flow of fluid with a free surface. Physics of Fluids, 8(12), 2182–2189.CrossRefMATH
Zurück zum Zitat Hinze, J. O. (1975). Turbulence (2nd ed.). New York: McGraw-Hill. Hinze, J. O. (1975). Turbulence (2nd ed.). New York: McGraw-Hill.
Zurück zum Zitat Huang, M. F., Chan, C. M., Kwok, K. C. S., & Hitchcock, P. A. (2007). “Dynamic analysis of wind-induced lateral-torsional response of tall buildings with coupled modes. In Proceedings of the 12th International Conference on Wind Engineering (pp. 295–302). Cairns, Australia, 2–6 July, 2007. Huang, M. F., Chan, C. M., Kwok, K. C. S., & Hitchcock, P. A. (2007). “Dynamic analysis of wind-induced lateral-torsional response of tall buildings with coupled modes. In Proceedings of the 12th International Conference on Wind Engineering (pp. 295–302). Cairns, Australia, 2–6 July, 2007.
Zurück zum Zitat Huang, S., Li, Q. S., & Xu, S. (2007b). Numerical evaluation of wind effects on a tall steel building by CFD. Journal of Constructional Steel Research, 63, 612–627.CrossRef Huang, S., Li, Q. S., & Xu, S. (2007b). Numerical evaluation of wind effects on a tall steel building by CFD. Journal of Constructional Steel Research, 63, 612–627.CrossRef
Zurück zum Zitat Iaccarino, G., Ooi, A., Durbin, P. A., & Behnia, M. (2003). Reynolds averaged simulation of unsteady separated flow. International Journal of Heat and Fluid Flow, 24, 147–156.CrossRef Iaccarino, G., Ooi, A., Durbin, P. A., & Behnia, M. (2003). Reynolds averaged simulation of unsteady separated flow. International Journal of Heat and Fluid Flow, 24, 147–156.CrossRef
Zurück zum Zitat Karweit, M., Juve, B. D., & Comte-Bellot, G. (1991). Simulation of the propagation of an acoustic wave through a turbulent velocity field: A study of phase variance. Journal of the Acoustical Society of America, 89(1), 52–62.CrossRef Karweit, M., Juve, B. D., & Comte-Bellot, G. (1991). Simulation of the propagation of an acoustic wave through a turbulent velocity field: A study of phase variance. Journal of the Acoustical Society of America, 89(1), 52–62.CrossRef
Zurück zum Zitat Kraichnan, R. H. (1970). Diffusion by a random velocity. Physics of Fluids, 13(1), 22–31.CrossRefMATH Kraichnan, R. H. (1970). Diffusion by a random velocity. Physics of Fluids, 13(1), 22–31.CrossRefMATH
Zurück zum Zitat Leonard, B. P. (1979). A stable and accurate convective modeling procedure based on quadratic upstream interpolation. Computer Methods in Applied Mechanics and Engineering, 19, 59–98.CrossRefMATH Leonard, B. P. (1979). A stable and accurate convective modeling procedure based on quadratic upstream interpolation. Computer Methods in Applied Mechanics and Engineering, 19, 59–98.CrossRefMATH
Zurück zum Zitat Launder, B. E., Reece, G. J., & Rodi, W. (1975). Progress in the development of Reynolds stress turbulence closure. Journal of Fluid Mechanics, 68, 537–566.CrossRefMATH Launder, B. E., Reece, G. J., & Rodi, W. (1975). Progress in the development of Reynolds stress turbulence closure. Journal of Fluid Mechanics, 68, 537–566.CrossRefMATH
Zurück zum Zitat Lim, H. C., Castro, I. P., & Hoxey, R. P. (2007). Bluff bodies in deep turbulent boundary layers: Reynolds-number issues. Journal of Fluid Mechanics, 571, 97–118.CrossRefMATH Lim, H. C., Castro, I. P., & Hoxey, R. P. (2007). Bluff bodies in deep turbulent boundary layers: Reynolds-number issues. Journal of Fluid Mechanics, 571, 97–118.CrossRefMATH
Zurück zum Zitat Manceau, R., & Hanjalic, K. (2002). Elliptic blending model: A new near-wall Reynolds-stress turbulence closure. Physics of Fluids, 14(2), 744–754.CrossRefMATH Manceau, R., & Hanjalic, K. (2002). Elliptic blending model: A new near-wall Reynolds-stress turbulence closure. Physics of Fluids, 14(2), 744–754.CrossRefMATH
Zurück zum Zitat Melbourne, W. H. (1980). Comparison of measurements on the CAARC standard tall building model in simulated model wind flows. Journal of Wind Engineering and Industrial Aerodynamics, 6, 73–88.CrossRef Melbourne, W. H. (1980). Comparison of measurements on the CAARC standard tall building model in simulated model wind flows. Journal of Wind Engineering and Industrial Aerodynamics, 6, 73–88.CrossRef
Zurück zum Zitat Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605.CrossRef Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605.CrossRef
Zurück zum Zitat Mochida, A., Murakami, S., Shoji, M., & Ishida, Y. (1993). Numerical simulation of flowfield around Texas Tech building by large eddy simulation. Journal of Wind Engineering and Industrial Aerodynamics, 46–47, 455–460.CrossRef Mochida, A., Murakami, S., Shoji, M., & Ishida, Y. (1993). Numerical simulation of flowfield around Texas Tech building by large eddy simulation. Journal of Wind Engineering and Industrial Aerodynamics, 46–47, 455–460.CrossRef
Zurück zum Zitat Murakami, S. (1997). Overview of turbulence models applied in CWE-1997. Journal of Wind Engineering and Industrial Aerodynamics, 74–76, 1–24. Murakami, S. (1997). Overview of turbulence models applied in CWE-1997. Journal of Wind Engineering and Industrial Aerodynamics, 74–76, 1–24.
Zurück zum Zitat Nicolleau, F. C. G. A., & Elmaihy, A. (2004). Study of the development of three-dimensional sets of fluid particles and iso-concentration fields using kinematic simulation. Journal of Fluid Mechanics, 517, 229–249.MathSciNetCrossRefMATH Nicolleau, F. C. G. A., & Elmaihy, A. (2004). Study of the development of three-dimensional sets of fluid particles and iso-concentration fields using kinematic simulation. Journal of Fluid Mechanics, 517, 229–249.MathSciNetCrossRefMATH
Zurück zum Zitat Oliveria, P. J., & Younis, B. A. (2000). On the prediction of turbulent flows around full-scale buildings. Journal of Wind Engineering and Industrial Aerodynamics, 86(2–3), 203–220.CrossRef Oliveria, P. J., & Younis, B. A. (2000). On the prediction of turbulent flows around full-scale buildings. Journal of Wind Engineering and Industrial Aerodynamics, 86(2–3), 203–220.CrossRef
Zurück zum Zitat Peric, M. (2004). Flow simulation using control volumes arbitrary polyhedral shape. ERCOFTAC Bulletin, 62, 25–29. Peric, M. (2004). Flow simulation using control volumes arbitrary polyhedral shape. ERCOFTAC Bulletin, 62, 25–29.
Zurück zum Zitat Reeve, J. S., Scurr, A. D., & Merlin, J. H. (2001). Parallel versions of Stone’s strongly implicit algorithm. Concurrency and Computation: Practice and Experience, 13, 1049–1062.CrossRefMATH Reeve, J. S., Scurr, A. D., & Merlin, J. H. (2001). Parallel versions of Stone’s strongly implicit algorithm. Concurrency and Computation: Practice and Experience, 13, 1049–1062.CrossRefMATH
Zurück zum Zitat Rodi, W. (1997). Comparison of LES and RANS calculations of the flow around bluff bodies. Journal of Wind Engineering and Industrial Aerodynamics, 69–71, 55–75.CrossRef Rodi, W. (1997). Comparison of LES and RANS calculations of the flow around bluff bodies. Journal of Wind Engineering and Industrial Aerodynamics, 69–71, 55–75.CrossRef
Zurück zum Zitat Rossi, R., Lazzari, M., & Vitaliani, R. (2004). Wind field simulation for structural engineering purposes. International Journal for Numerical Methods in Engineering, 61, 738–763.CrossRefMATH Rossi, R., Lazzari, M., & Vitaliani, R. (2004). Wind field simulation for structural engineering purposes. International Journal for Numerical Methods in Engineering, 61, 738–763.CrossRefMATH
Zurück zum Zitat Senthooran, S., Lee, D. D., & Parameswaran, S. (2004). A computational model to calculate the flow-induced pressure fluctuations on buildings. Journal of Wind Engineering and Industrial Aerodynamics, 92, 1131–1145.CrossRef Senthooran, S., Lee, D. D., & Parameswaran, S. (2004). A computational model to calculate the flow-induced pressure fluctuations on buildings. Journal of Wind Engineering and Industrial Aerodynamics, 92, 1131–1145.CrossRef
Zurück zum Zitat Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new K − ε eddy-viscosity model for high reynolds number turbulent flows—model development and validation. Computers & Fluids, 24(3), 227–238.CrossRefMATH Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new K − ε eddy-viscosity model for high reynolds number turbulent flows—model development and validation. Computers & Fluids, 24(3), 227–238.CrossRefMATH
Zurück zum Zitat Shinozuka, M. (1971). Simulation of multivariate and multidimensional random processes. Journal of the Acoustical Society of America, 49(1), 357–367.CrossRef Shinozuka, M. (1971). Simulation of multivariate and multidimensional random processes. Journal of the Acoustical Society of America, 49(1), 357–367.CrossRef
Zurück zum Zitat Shur, M. L., Spalart, P. R., Strelets, M Kh, & Travin, A. K. (2008). A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. International Journal of Heat and Fluid Flow, 29, 1638–1649.CrossRef Shur, M. L., Spalart, P. R., Strelets, M Kh, & Travin, A. K. (2008). A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. International Journal of Heat and Fluid Flow, 29, 1638–1649.CrossRef
Zurück zum Zitat Song, C. S., & Park, S. O. (2009). Numerical simulation of flow past a square cylinder using partially-averaged Navier-stokes model. Journal of Wind Engineering and Industrial Aerodynamics, 97(1), 37–47.MathSciNetCrossRef Song, C. S., & Park, S. O. (2009). Numerical simulation of flow past a square cylinder using partially-averaged Navier-stokes model. Journal of Wind Engineering and Industrial Aerodynamics, 97(1), 37–47.MathSciNetCrossRef
Zurück zum Zitat Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M Kh, & Travin, A. (2006). A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics, 20, 181–195.CrossRefMATH Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M Kh, & Travin, A. (2006). A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics, 20, 181–195.CrossRefMATH
Zurück zum Zitat Speziale, C. G., Sarkar, S., & Gatski, T. B. (1991). Modelling the pressure-strain correlation of turbulence: An invariant dynamical systems approach. Journal of Fluid Mechanics, 227, 245–272.CrossRefMATH Speziale, C. G., Sarkar, S., & Gatski, T. B. (1991). Modelling the pressure-strain correlation of turbulence: An invariant dynamical systems approach. Journal of Fluid Mechanics, 227, 245–272.CrossRefMATH
Zurück zum Zitat Tamura, T. (2008). Towards practical use of LES in wind engineering. Journal of Wind Engineering and Industrial Aerodynamics, 96(10–11), 1451–1471.CrossRef Tamura, T. (2008). Towards practical use of LES in wind engineering. Journal of Wind Engineering and Industrial Aerodynamics, 96(10–11), 1451–1471.CrossRef
Zurück zum Zitat Tessicini, N., Li, N., & Leschziner, M. A. (2007). Large-eddy simulation of three-dimensional flow around a hill shaped obstruction with a zonal near-wall approximation. International Journal of Heat and Fluid Flow, 28, 894–908.CrossRef Tessicini, N., Li, N., & Leschziner, M. A. (2007). Large-eddy simulation of three-dimensional flow around a hill shaped obstruction with a zonal near-wall approximation. International Journal of Heat and Fluid Flow, 28, 894–908.CrossRef
Metadaten
Titel
A Hybrid RANS and Kinematic Simulation of Wind Load Effects on Full-Scale Tall Buildings
verfasst von
Mingfeng Huang
Copyright-Jahr
2017
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-1744-5_3