Skip to main content
Erschienen in: Journal of Materials Science 3/2015

01.02.2015 | Original Paper

A hyperbolic phase-field model for rapid solidification of a binary alloy

verfasst von: Haifeng Wang, Wangwang Kuang, Xiao Zhang, Feng Liu

Erschienen in: Journal of Materials Science | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A hyperbolic phase-field model (PFM) was proposed from the thermodynamic extremal principle for rapid solidification of a binary alloy. In the modeling, not only the interface but also the bulk phases are under non-equilibrium conditions. Dissipation inside the interface, its relations to the sharp interface models, and the previous PFMs are discussed. The solute diffusion in liquid splits into the long-range solute diffusion and the short-range solute redistribution between solid and liquid if the solute diffusion in solid is negligible, being consistent with a recent concept of finite interface dissipation proposed by Steinbach and coauthors (Steinbach in Annu Rev Mater Res 43:89–107, 2013; Steinbach et al. in Acta Mater 60:2689–2701, 2012; Zhang, Steinbach in Acta Mater 60:2702–2710, 2012; Zhang et al. in Acta Mater 61:4155–4168, 2013). Complete solute trapping is predicted when the interface velocity is equal to or larger than the maximal solute diffusion velocity. The interface kinetics is analyzed theoretically and simulated numerically for the rapid solidification of Si–9 at.% As alloy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
It must be pointed out that all the thermodynamic principles for modeling of the non-equilibrium dissipative systems (e.g., the Onsager’s least energy dissipation principle [21], the maximal entropy production principle [22, 23]) are renamed uniformly as the TEP in a recent review of Fisher et al. [24].
 
2
The superscript “*” in the current work denotes the values at the boundary between interface and solid (liquid) in the thick interface or the values at the sharp interface.
 
3
Similar to Galenko et al. [20], the non-equilibrium bulk contribution influences the long-range solute diffusion but not the short-range solute redistribution between solid and liquid.
 
Literatur
1.
Zurück zum Zitat Steinbach I (2009) Phase-field models in materials science. Model Simul Mater Sci Eng 17:073001CrossRef Steinbach I (2009) Phase-field models in materials science. Model Simul Mater Sci Eng 17:073001CrossRef
2.
Zurück zum Zitat Steinbach I, Shchyglo O (2011) Phase-field modelling of microstructure evolution in solids: perspectives and challenges. Curr Opin Solid State Mater Sci 15:87–92CrossRef Steinbach I, Shchyglo O (2011) Phase-field modelling of microstructure evolution in solids: perspectives and challenges. Curr Opin Solid State Mater Sci 15:87–92CrossRef
3.
Zurück zum Zitat Steinbach I (2013) Phase-field model for microstructure evolution at the mesoscopic scale. Annu Rev Mater Res 43:89–107CrossRef Steinbach I (2013) Phase-field model for microstructure evolution at the mesoscopic scale. Annu Rev Mater Res 43:89–107CrossRef
4.
Zurück zum Zitat Emmerich H (2008) Advances of and by phase-field modelling in condensed-matter physics. Adv Phys 57:1–87CrossRef Emmerich H (2008) Advances of and by phase-field modelling in condensed-matter physics. Adv Phys 57:1–87CrossRef
5.
Zurück zum Zitat McKenna IM, Gururajan MP, Voorhees PW (2009) Phase field modeling of grain growth: effect of boundary thickness, triple junctions, misorientation, and anisotropy. J Mater Sci 44:2206–2217. doi:10.1007/s10853-008-3196-7 CrossRef McKenna IM, Gururajan MP, Voorhees PW (2009) Phase field modeling of grain growth: effect of boundary thickness, triple junctions, misorientation, and anisotropy. J Mater Sci 44:2206–2217. doi:10.​1007/​s10853-008-3196-7 CrossRef
7.
Zurück zum Zitat Wheeler AA, Boettinger WJ, McFadden GB (1992) Phase-field model for isothermal phase transitions in binary alloys. Phys Rev A 45:7424–7439CrossRef Wheeler AA, Boettinger WJ, McFadden GB (1992) Phase-field model for isothermal phase transitions in binary alloys. Phys Rev A 45:7424–7439CrossRef
8.
Zurück zum Zitat Karma A (2001) Phase-field Formulation for quantitative modeling of alloy solidification. Phys Rev Lett 87:115701CrossRef Karma A (2001) Phase-field Formulation for quantitative modeling of alloy solidification. Phys Rev Lett 87:115701CrossRef
9.
Zurück zum Zitat Echebarria B, Folch R, Karma A, Plapp M (2004) Quantitative phase-field model of alloy solidification. Phys Rev E 70:061604CrossRef Echebarria B, Folch R, Karma A, Plapp M (2004) Quantitative phase-field model of alloy solidification. Phys Rev E 70:061604CrossRef
10.
Zurück zum Zitat Tiaden J, Nestler B, Diepers HJ, Steinbach I (1998) The multiphase-field model with an integrated concept for modelling solute diffusion. Physica D 115:73–86CrossRef Tiaden J, Nestler B, Diepers HJ, Steinbach I (1998) The multiphase-field model with an integrated concept for modelling solute diffusion. Physica D 115:73–86CrossRef
11.
Zurück zum Zitat Kim SG, Kim WT, Suzuki T (1999) Phase-field model for binary alloys. Phys Rev E 60:7186–7197CrossRef Kim SG, Kim WT, Suzuki T (1999) Phase-field model for binary alloys. Phys Rev E 60:7186–7197CrossRef
12.
Zurück zum Zitat Eiken J, Böttger B, Steinbach I (2006) Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application. Phys Rev E 73:066122CrossRef Eiken J, Böttger B, Steinbach I (2006) Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application. Phys Rev E 73:066122CrossRef
13.
Zurück zum Zitat Böttger B, Eiken J, Steinbach I (2006) Phase field simulation of equiaxed solidification in technical alloys. Acta Mater 54:2697–2704CrossRef Böttger B, Eiken J, Steinbach I (2006) Phase field simulation of equiaxed solidification in technical alloys. Acta Mater 54:2697–2704CrossRef
14.
Zurück zum Zitat Steinbach I, Zhang LJ, Plapp M (2012) Phase-field model with finite interface dissipation. Acta Mater 60:2689–2701CrossRef Steinbach I, Zhang LJ, Plapp M (2012) Phase-field model with finite interface dissipation. Acta Mater 60:2689–2701CrossRef
15.
Zurück zum Zitat Zhang LJ, Steinbach I (2012) Phase-field model with finite interface dissipation: extension to multi-component multi-phase alloys. Acta Mater 60:2702–2710CrossRef Zhang LJ, Steinbach I (2012) Phase-field model with finite interface dissipation: extension to multi-component multi-phase alloys. Acta Mater 60:2702–2710CrossRef
16.
Zurück zum Zitat Zhang LJ, Danilova EV, Steinbach I et al (2013) Diffuse-interface modeling of solute trapping in rapid solidification: predictions of the hyperbolic phase-field model and parabolic model with finite interface dissipation. Acta Mater 61:4155–4168CrossRef Zhang LJ, Danilova EV, Steinbach I et al (2013) Diffuse-interface modeling of solute trapping in rapid solidification: predictions of the hyperbolic phase-field model and parabolic model with finite interface dissipation. Acta Mater 61:4155–4168CrossRef
17.
Zurück zum Zitat Wang HF, Liu F, Ehlen GJ, Herlach DM (2013) Application of the maximal entropy production principle to rapid solidification: a multi-phase-field model. Acta Mater 61:2617–2627CrossRef Wang HF, Liu F, Ehlen GJ, Herlach DM (2013) Application of the maximal entropy production principle to rapid solidification: a multi-phase-field model. Acta Mater 61:2617–2627CrossRef
18.
Zurück zum Zitat Galenko P (2001) Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system. Phys Lett A 287:190–197CrossRef Galenko P (2001) Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system. Phys Lett A 287:190–197CrossRef
19.
Zurück zum Zitat Lebedev VG, Abramova EV, Danilov DA, Galenko PK (2010) Phase-field modeling of solute trapping comparative analysis of parabolic and hyperbolic models. Int J Mat Res 101:473–479CrossRef Lebedev VG, Abramova EV, Danilov DA, Galenko PK (2010) Phase-field modeling of solute trapping comparative analysis of parabolic and hyperbolic models. Int J Mat Res 101:473–479CrossRef
20.
Zurück zum Zitat Galenko P, Abramova EV, Jou D et al (2011) Solute trapping in rapid solidification of a binary dilute system: a phase-field study. Phys Rev E 84:041143CrossRef Galenko P, Abramova EV, Jou D et al (2011) Solute trapping in rapid solidification of a binary dilute system: a phase-field study. Phys Rev E 84:041143CrossRef
21.
Zurück zum Zitat Onsager L (1931) Reciprocal relations in irreversible processes. I. Phys Rev 37:405–426CrossRef Onsager L (1931) Reciprocal relations in irreversible processes. I. Phys Rev 37:405–426CrossRef
22.
Zurück zum Zitat Ziegler H (1983) An introduction to thermodynamics. North-Holland, Amsterdam Ziegler H (1983) An introduction to thermodynamics. North-Holland, Amsterdam
23.
Zurück zum Zitat Martyushev LM, Seleznev VD (2006) Maximum entropy production principle in physics, chemistry and biology. Phys Rep 426:1–45CrossRef Martyushev LM, Seleznev VD (2006) Maximum entropy production principle in physics, chemistry and biology. Phys Rep 426:1–45CrossRef
24.
Zurück zum Zitat Fischer FD, Svoboda J, Petryk H (2014) Thermodynamic extremal principles for irreversible processes in materials science. Acta Mater 67:1–20CrossRef Fischer FD, Svoboda J, Petryk H (2014) Thermodynamic extremal principles for irreversible processes in materials science. Acta Mater 67:1–20CrossRef
25.
Zurück zum Zitat Jou D, Casas-Vázquez J, Lebon G (2010) Extended irreversible thermodynamics. Springer, BerlinCrossRef Jou D, Casas-Vázquez J, Lebon G (2010) Extended irreversible thermodynamics. Springer, BerlinCrossRef
26.
Zurück zum Zitat Galenko PK, Sobolev SL (1997) Local nonequilibrium effect on undercooling in rapid solidification of alloys. Phys Rev E 55:343–352CrossRef Galenko PK, Sobolev SL (1997) Local nonequilibrium effect on undercooling in rapid solidification of alloys. Phys Rev E 55:343–352CrossRef
27.
Zurück zum Zitat Galenko PK (2002) Extended thermodynamical analysis of a motion of the solid–liquid interface in a rapidly solidifying alloy. Phys Rev B 65:144103CrossRef Galenko PK (2002) Extended thermodynamical analysis of a motion of the solid–liquid interface in a rapidly solidifying alloy. Phys Rev B 65:144103CrossRef
28.
Zurück zum Zitat Galenko PK (2007) Solute trapping and diffusionless solidification in a binary system. Phys Rev E 76:031606CrossRef Galenko PK (2007) Solute trapping and diffusionless solidification in a binary system. Phys Rev E 76:031606CrossRef
29.
Zurück zum Zitat Aziz MJ (1982) Model for solute redistribution during rapid solidification. J Appl Phys 53:1158–1168CrossRef Aziz MJ (1982) Model for solute redistribution during rapid solidification. J Appl Phys 53:1158–1168CrossRef
30.
Zurück zum Zitat Aziz MJ, Kaplan T (1988) Continuous growth model for interface motion during alloy solidification. Acta Metall 36:2335–2347CrossRef Aziz MJ, Kaplan T (1988) Continuous growth model for interface motion during alloy solidification. Acta Metall 36:2335–2347CrossRef
31.
Zurück zum Zitat Galenko PK, Danilov DA (1997) Local nonequilibrium effect on rapid dendritic growth in a binary alloy melt. Phys Lett A 235:271–280CrossRef Galenko PK, Danilov DA (1997) Local nonequilibrium effect on rapid dendritic growth in a binary alloy melt. Phys Lett A 235:271–280CrossRef
32.
Zurück zum Zitat Galenko PK, Danilov DA (1999) Model for free dendritic alloy growth under interfacial and bulk phase nonequilibrium conditions. J Cryst Growth 197:992–1002CrossRef Galenko PK, Danilov DA (1999) Model for free dendritic alloy growth under interfacial and bulk phase nonequilibrium conditions. J Cryst Growth 197:992–1002CrossRef
33.
Zurück zum Zitat Yang Y, Humadi H, Buta D et al (2011) Atomistic simulations of nonequilibrium crystal-growth kinetics from alloy melts. Phys Rev Lett 107:025505CrossRef Yang Y, Humadi H, Buta D et al (2011) Atomistic simulations of nonequilibrium crystal-growth kinetics from alloy melts. Phys Rev Lett 107:025505CrossRef
34.
Zurück zum Zitat Baker JC (1970) Interfacial partitioning during solidification. PhD thesis, MIT Baker JC (1970) Interfacial partitioning during solidification. PhD thesis, MIT
35.
Zurück zum Zitat Svoboda J, Turek I (1991) On diffusion-controlled evolution of closed solid-state thermodynamic systems at constant temperature and pressure. Philos Mag B 64:749–759CrossRef Svoboda J, Turek I (1991) On diffusion-controlled evolution of closed solid-state thermodynamic systems at constant temperature and pressure. Philos Mag B 64:749–759CrossRef
36.
Zurück zum Zitat Svoboda J, Turek I, Fischer FD (2005) Application of the thermodynamic extremal principle to modeling of thermodynamic processes in material sciences. Philos Mag 85:3699–3707CrossRef Svoboda J, Turek I, Fischer FD (2005) Application of the thermodynamic extremal principle to modeling of thermodynamic processes in material sciences. Philos Mag 85:3699–3707CrossRef
37.
Zurück zum Zitat Svoboda J, Fischer FD, Fratzl P, Kroupa A (2002) Diffusion in multi-component systems with no or dense sources and sinks for vacancies. Acta Mater 50:1369–1381CrossRef Svoboda J, Fischer FD, Fratzl P, Kroupa A (2002) Diffusion in multi-component systems with no or dense sources and sinks for vacancies. Acta Mater 50:1369–1381CrossRef
38.
Zurück zum Zitat Svoboda J, Fischer FD, McDowell DL (2012) Derivation of the phase field equations from the thermodynamic extremal principle. Acta Mater 60:396–406CrossRef Svoboda J, Fischer FD, McDowell DL (2012) Derivation of the phase field equations from the thermodynamic extremal principle. Acta Mater 60:396–406CrossRef
39.
Zurück zum Zitat Cahn JW, Hillard J (1958) Free energy of a nonuniform system. I. Interface free energy. J Chem Phys 28:258–267CrossRef Cahn JW, Hillard J (1958) Free energy of a nonuniform system. I. Interface free energy. J Chem Phys 28:258–267CrossRef
40.
Zurück zum Zitat Allen SM, Cahn JW (1979) A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 27:1085–1095CrossRef Allen SM, Cahn JW (1979) A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 27:1085–1095CrossRef
42.
Zurück zum Zitat Penrose O, Fife PC (1990) Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Physica D 43:44–62CrossRef Penrose O, Fife PC (1990) Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Physica D 43:44–62CrossRef
43.
Zurück zum Zitat Wang SL, Sekerka RF, Wheeler AA et al (1993) Thermodynamically consistent phase-field models for solidification. Physica D 69:189–200CrossRef Wang SL, Sekerka RF, Wheeler AA et al (1993) Thermodynamically consistent phase-field models for solidification. Physica D 69:189–200CrossRef
44.
Zurück zum Zitat Sekerka RF (2011) Irreversible thermodynamic basis of phase field models. Philos Mag 91:3–23CrossRef Sekerka RF (2011) Irreversible thermodynamic basis of phase field models. Philos Mag 91:3–23CrossRef
45.
Zurück zum Zitat Galenko P, Jou D (2005) Diffuse-interface model for rapid phase transformations in nonequilibrium systems. Phys Rev E 71:046125CrossRef Galenko P, Jou D (2005) Diffuse-interface model for rapid phase transformations in nonequilibrium systems. Phys Rev E 71:046125CrossRef
46.
Zurück zum Zitat Galenko P, Jou D (2009) Kinetic contribution to the fast spinodal decomposition controlled by diffusion. Physica A 388:3113–3123CrossRef Galenko P, Jou D (2009) Kinetic contribution to the fast spinodal decomposition controlled by diffusion. Physica A 388:3113–3123CrossRef
47.
Zurück zum Zitat Moelans N (2011) A quantitative and thermodynamically consistent phase-field interpolation function for multi-phase systems. Acta Mater 59:1077–1086CrossRef Moelans N (2011) A quantitative and thermodynamically consistent phase-field interpolation function for multi-phase systems. Acta Mater 59:1077–1086CrossRef
48.
Zurück zum Zitat Hillert M, Rettenmayr M (2003) Deviation from local equilibrium at migrating phase interfaces. Acta Mater 51:2803–2809CrossRef Hillert M, Rettenmayr M (2003) Deviation from local equilibrium at migrating phase interfaces. Acta Mater 51:2803–2809CrossRef
49.
Zurück zum Zitat Hillert M, Odqvist J, Ǻgren J (2004) Interface conditions during diffusion-controlled phase transformations. Scripta Mater 50:547–550CrossRef Hillert M, Odqvist J, Ǻgren J (2004) Interface conditions during diffusion-controlled phase transformations. Scripta Mater 50:547–550CrossRef
50.
Zurück zum Zitat Wang HF, Liu F, Zhai HM, Wang K (2012) Application of the maximal entropy production principle to rapid solidification: a sharp interface model. Acta Mater 60:1444–1454CrossRef Wang HF, Liu F, Zhai HM, Wang K (2012) Application of the maximal entropy production principle to rapid solidification: a sharp interface model. Acta Mater 60:1444–1454CrossRef
51.
Zurück zum Zitat Hillert M (1999) Solute drag, solute trapping and diffusional dissipation of gibbs energy. Acta Mater 47:4481–4505CrossRef Hillert M (1999) Solute drag, solute trapping and diffusional dissipation of gibbs energy. Acta Mater 47:4481–4505CrossRef
52.
Zurück zum Zitat Ahmad NA, Wheeler AA, Boettinger WJ, McFadden GB (1998) Solute trapping and solute drag in a phase-field model of rapid solidification. Phys Rev E 58:3436–3450CrossRef Ahmad NA, Wheeler AA, Boettinger WJ, McFadden GB (1998) Solute trapping and solute drag in a phase-field model of rapid solidification. Phys Rev E 58:3436–3450CrossRef
53.
Zurück zum Zitat Wheeler AA, Boettinger WJ, McFadden GB (1993) Phase-field model of solute trapping during solidification. Phys Rev E 47:1893–1909CrossRef Wheeler AA, Boettinger WJ, McFadden GB (1993) Phase-field model of solute trapping during solidification. Phys Rev E 47:1893–1909CrossRef
Metadaten
Titel
A hyperbolic phase-field model for rapid solidification of a binary alloy
verfasst von
Haifeng Wang
Wangwang Kuang
Xiao Zhang
Feng Liu
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 3/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8686-1

Weitere Artikel der Ausgabe 3/2015

Journal of Materials Science 3/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.