Skip to main content
Erschienen in: Quantum Information Processing 7/2018

01.07.2018

A large-alphabet three-party quantum key distribution protocol based on orbital and spin angular momenta hybrid entanglement

verfasst von: Hong Lai, Mingxing Luo, Jun Zhang, Josef Pieprzyk, Lei Pan, Mehmet A. Orgun

Erschienen in: Quantum Information Processing | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The orthogonality of the orbital angular momentum (OAM) eigenstates enables a single photon carry an arbitrary number of bits. Moreover, additional degrees of freedom (DOFs) of OAM can span a high-dimensional Hilbert space, which could greatly increase information capacity and security. Moreover, the use of the spin angular momentum–OAM hybrid entangled state can increase Shannon dimensionality, because photons can be hybrid entangled in multiple DOFs. Based on these observations, we develop a hybrid entanglement quantum key distribution (QKD) protocol to achieve three-party quantum key distribution without classical message exchanges. In our proposed protocol, a communicating party uses a spatial light modulator (SLM) and a specific phase hologram to modulate photons’ OAM state. Similarly, the other communicating parties use their SLMs and the fixed different phase holograms to modulate the OAM entangled photon pairs, producing the shared key among the parties Alice, Bob and Charlie without classical message exchanges. More importantly, when the same operation is repeated for every party, our protocol could be extended to a multiple-party QKD protocol.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, India) (IEEE, New York) pp. 175–179 (1984) Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, India) (IEEE, New York) pp. 175–179 (1984)
2.
Zurück zum Zitat Djordjevic, I.B.: Multidimensional QKD based on combined orbital and spin angular momenta of photon. IEEE Photon. J. 5(6), 1–13 (2013)CrossRef Djordjevic, I.B.: Multidimensional QKD based on combined orbital and spin angular momenta of photon. IEEE Photon. J. 5(6), 1–13 (2013)CrossRef
3.
Zurück zum Zitat Perumangatt, C., Rahim, A.A., Salla, G.R., et al.: Three-particle hyper-entanglement: teleportation and quantum key distribution. Quantum Inf. Process. 14, 3813–3826 (2015)ADSMathSciNetCrossRefMATH Perumangatt, C., Rahim, A.A., Salla, G.R., et al.: Three-particle hyper-entanglement: teleportation and quantum key distribution. Quantum Inf. Process. 14, 3813–3826 (2015)ADSMathSciNetCrossRefMATH
4.
Zurück zum Zitat Zhuang, Q.T., Zhang, Z.S., Shapiro, J.H.: Large-alphabet encoding schemes for floodlight quantum key distribution. arXiv:1702.02424v1 [quant-ph] (2017) Zhuang, Q.T., Zhang, Z.S., Shapiro, J.H.: Large-alphabet encoding schemes for floodlight quantum key distribution. arXiv:​1702.​02424v1 [quant-ph] (2017)
5.
Zurück zum Zitat Ding, Y.H., Bacco, D., Dalgaard, K., et al.: High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. NPJ Quantum Inf. 3(1), 1–7 (2017)CrossRef Ding, Y.H., Bacco, D., Dalgaard, K., et al.: High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. NPJ Quantum Inf. 3(1), 1–7 (2017)CrossRef
6.
Zurück zum Zitat Guan, D.J., Wang, Y.J., Zhuang, E.: A practical protocol for three-party authenticated quantum key distribution. Quantum Inf. Process. 13(11), 2355–2374 (2014)ADSMathSciNetCrossRefMATH Guan, D.J., Wang, Y.J., Zhuang, E.: A practical protocol for three-party authenticated quantum key distribution. Quantum Inf. Process. 13(11), 2355–2374 (2014)ADSMathSciNetCrossRefMATH
7.
Zurück zum Zitat Papanastasiou, P., Weedbrook, C., Pirandola, S.: Continuous-variable quantum key distribution in fast fading channels. arXiv preprint arXiv:1710.03525 (2017) Papanastasiou, P., Weedbrook, C., Pirandola, S.: Continuous-variable quantum key distribution in fast fading channels. arXiv preprint arXiv:​1710.​03525 (2017)
8.
Zurück zum Zitat Alshowkan, M., Elleithy, K., Odeh, A., Abdelfattah, E.: A new algorithm for three-party quantum key distribution. In: 2013 Third International Conference on Innovative Computing Technology (INTECH), pp. 208–212. IEEE Alshowkan, M., Elleithy, K., Odeh, A., Abdelfattah, E.: A new algorithm for three-party quantum key distribution. In: 2013 Third International Conference on Innovative Computing Technology (INTECH), pp. 208–212. IEEE
9.
Zurück zum Zitat Shih, H.C., Lee, K.C., Hwang, T.: New efficient three-party quantum key distribution protocols. IEEE J. Sel. Top. Quantum Electron. 15(6), 1602–1606 (2009)ADSCrossRef Shih, H.C., Lee, K.C., Hwang, T.: New efficient three-party quantum key distribution protocols. IEEE J. Sel. Top. Quantum Electron. 15(6), 1602–1606 (2009)ADSCrossRef
10.
Zurück zum Zitat Chen, H.C., Lin, S.Z., Kung, T.L.: Three-party authenticated quantum key distribution protocol with time constraint. In: Proceedings of the 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), pp. 506–511. IEEE Chen, H.C., Lin, S.Z., Kung, T.L.: Three-party authenticated quantum key distribution protocol with time constraint. In: Proceedings of the 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), pp. 506–511. IEEE
11.
Zurück zum Zitat Wijayanto, H., Chen, H.C., Lin, W.Y.: A smart card-based three-party quantum key distribution protocol. In: Proceedings of the International Conference on Broadband and Wireless Computing, Communication and Applications, Springer, pp. 291–301 Wijayanto, H., Chen, H.C., Lin, W.Y.: A smart card-based three-party quantum key distribution protocol. In: Proceedings of the International Conference on Broadband and Wireless Computing, Communication and Applications, Springer, pp. 291–301
12.
Zurück zum Zitat Poynting, J.H.: The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc. R. Soc. Lond. A 82, 560–567 (1909)ADSCrossRefMATH Poynting, J.H.: The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc. R. Soc. Lond. A 82, 560–567 (1909)ADSCrossRefMATH
13.
Zurück zum Zitat Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre-Gaussian modes. Phys. Rev. A 45, 8185–8190 (1992)ADSCrossRef Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre-Gaussian modes. Phys. Rev. A 45, 8185–8190 (1992)ADSCrossRef
14.
Zurück zum Zitat Chen, L.X., She, W.: Encoding orbital angular momentum onto multiple spin states based on a Huffman tree. New J. Phys. 11(10), 103002 (2009)ADSCrossRef Chen, L.X., She, W.: Encoding orbital angular momentum onto multiple spin states based on a Huffman tree. New J. Phys. 11(10), 103002 (2009)ADSCrossRef
15.
Zurück zum Zitat Chen, D., Zhao, S.H., Shang, T.F.: Measurement device independent quantum key distribution assisted by hybrid qubit. J. Mod. Opt. 63(21), 2326–2331 (2016)ADSCrossRef Chen, D., Zhao, S.H., Shang, T.F.: Measurement device independent quantum key distribution assisted by hybrid qubit. J. Mod. Opt. 63(21), 2326–2331 (2016)ADSCrossRef
16.
Zurück zum Zitat Chen, D., Zhao, S.H., Sun, Y.: Measurement-device-independent quantum key distribution with q-plate. Quantum Inf. Process. 14(12), 4575–4584 (2015)ADSMathSciNetCrossRefMATH Chen, D., Zhao, S.H., Sun, Y.: Measurement-device-independent quantum key distribution with q-plate. Quantum Inf. Process. 14(12), 4575–4584 (2015)ADSMathSciNetCrossRefMATH
17.
Zurück zum Zitat Chen, D., Zhao, S.H., Shi, L., Liu, Y.: Measurement-device-independent quantum key distribution with pairs of vector vortex beams. Phys. Rev. A 93(3), 032320 (2016)ADSCrossRef Chen, D., Zhao, S.H., Shi, L., Liu, Y.: Measurement-device-independent quantum key distribution with pairs of vector vortex beams. Phys. Rev. A 93(3), 032320 (2016)ADSCrossRef
18.
Zurück zum Zitat Marrucci, L., Manzo, C., Paparo, D.: Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006)ADSCrossRef Marrucci, L., Manzo, C., Paparo, D.: Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006)ADSCrossRef
19.
Zurück zum Zitat Yan, L., Gregg, P., Karimi, E., Rubano, A., Marrucci, L., Boyd, R., Ramachandran, S., et al.: Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy. Optica 2, 900–903 (2015)CrossRef Yan, L., Gregg, P., Karimi, E., Rubano, A., Marrucci, L., Boyd, R., Ramachandran, S., et al.: Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy. Optica 2, 900–903 (2015)CrossRef
20.
Zurück zum Zitat Marrucci, L., Karimi, E., Slussarenko, S., et al.: Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt. 13(6), 064001 (2011)ADSCrossRef Marrucci, L., Karimi, E., Slussarenko, S., et al.: Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt. 13(6), 064001 (2011)ADSCrossRef
21.
Zurück zum Zitat Chen, L.X., She, W.: Increasing Shannon dimensionality by hyperentanglement of spin and fractional orbital angular momentum. Opt. Lett. 34(12), 1855–1857 (2009)ADSCrossRef Chen, L.X., She, W.: Increasing Shannon dimensionality by hyperentanglement of spin and fractional orbital angular momentum. Opt. Lett. 34(12), 1855–1857 (2009)ADSCrossRef
22.
Zurück zum Zitat Nagali, E., Sciarrino, F., De Martini, F., et al.: Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett. 103(1), 013601 (2009)ADSCrossRef Nagali, E., Sciarrino, F., De Martini, F., et al.: Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett. 103(1), 013601 (2009)ADSCrossRef
23.
Zurück zum Zitat Zhang, C.X., Guo, B.H., Cheng, G.M., Guo, J.J., Fan, R.H.: Spin-orbit hybrid entanglement quantum key distribution scheme. Sci. China Phys. Mech. Astron. 57(11), 2043–2048 (2014)ADSCrossRef Zhang, C.X., Guo, B.H., Cheng, G.M., Guo, J.J., Fan, R.H.: Spin-orbit hybrid entanglement quantum key distribution scheme. Sci. China Phys. Mech. Astron. 57(11), 2043–2048 (2014)ADSCrossRef
24.
Zurück zum Zitat Chen, L.X., She, W.L.: Hybrid entanglement swapping of photons: creating the orbital angular momentum Bell states and Greenberger–Horne–Zeilinger states. Phys. Rev. A 83, 012306 (2011)ADSCrossRef Chen, L.X., She, W.L.: Hybrid entanglement swapping of photons: creating the orbital angular momentum Bell states and Greenberger–Horne–Zeilinger states. Phys. Rev. A 83, 012306 (2011)ADSCrossRef
25.
Zurück zum Zitat Zhao, S.M., Gong, L.Y., Li, Y.Q., Yang, H., Sheng, Y.B., Cheng, W.W.: A large-alphabet quantum key distribution protocol using orbital angular momentum entanglement. Chin. Phys. Lett. 30(6), 060305 (2013)ADSCrossRef Zhao, S.M., Gong, L.Y., Li, Y.Q., Yang, H., Sheng, Y.B., Cheng, W.W.: A large-alphabet quantum key distribution protocol using orbital angular momentum entanglement. Chin. Phys. Lett. 30(6), 060305 (2013)ADSCrossRef
26.
Zurück zum Zitat Leach, J., Jack, B., Romero, J., et al.: Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces. Opt. Expr. 17(10), 8287–8293 (2009)ADSCrossRef Leach, J., Jack, B., Romero, J., et al.: Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces. Opt. Expr. 17(10), 8287–8293 (2009)ADSCrossRef
27.
Zurück zum Zitat Clauser, J.F., Horne, M.A., Shimony, A., et al.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880–884 (1969)ADSCrossRefMATH Clauser, J.F., Horne, M.A., Shimony, A., et al.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880–884 (1969)ADSCrossRefMATH
Metadaten
Titel
A large-alphabet three-party quantum key distribution protocol based on orbital and spin angular momenta hybrid entanglement
verfasst von
Hong Lai
Mingxing Luo
Jun Zhang
Josef Pieprzyk
Lei Pan
Mehmet A. Orgun
Publikationsdatum
01.07.2018
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 7/2018
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-018-1933-7

Weitere Artikel der Ausgabe 7/2018

Quantum Information Processing 7/2018 Zur Ausgabe

Neuer Inhalt