Skip to main content
Erschienen in: Programming and Computer Software 6/2018

01.11.2018

A Machine Learning Framework for Feature Selection in Heart Disease Classification Using Improved Particle Swarm Optimization with Support Vector Machine Classifier

verfasst von: J. Vijayashree, H. Parveen Sultana

Erschienen in: Programming and Computer Software | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Machine learning is used as an effective support system in health diagnosis which contains large volume of data. More commonly, analyzing such a large volume of data consumes more resources and execution time. In addition, all the features present in the dataset do not support in achieving the solution of the given problem. Hence, there is a need to use an effective feature selection algorithm for finding the more important features that contribute more in diagnosing the diseases. The Particle Swarm Optimization (PSO) is one of the metaheuristic algorithms to find the best solution with less time. Nowadays, PSO algorithm is not only used to select the more significant features but also removes the irrelevant and redundant features present in the dataset. However, the traditional PSO algorithm has an issue in selecting the optimal weight to update the velocity and position of the particles. To overcome this issue, this paper presents a novel function for identifying optimal weights on the basis of population diversity function and tuning function. We have also proposed a novel fitness function for PSO with the help of Support Vector Machine (SVM). The objective of the fitness function is to minimize the number of attributes and increase the accuracy. The performance of the proposed PSO-SVM is compared with the various existing feature selection algorithms such as Info gain, Chi-squared, One attribute based, Consistency subset, Relief, CFS, Filtered subset, Filtered attribute, Gain ratio and PSO algorithm. The SVM classifier is also compared with several classifiers such as Naive Bayes, Random forest and MLP.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Imran Kurt, Mevlut Ture, et al., Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease, J. Expert Syst. Appl., 2008, vol. 34, pp. 366–374.CrossRef Imran Kurt, Mevlut Ture, et al., Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease, J. Expert Syst. Appl., 2008, vol. 34, pp. 366–374.CrossRef
2.
Zurück zum Zitat Hongmei Yan, Jun Zheng, et al., Selecting critical clinical features for heart diseases diagnosis with a real-coded genetic algorithm, J. Appl. Soft Comput., 2008, vol. 8, pp. 1105–1111.CrossRef Hongmei Yan, Jun Zheng, et al., Selecting critical clinical features for heart diseases diagnosis with a real-coded genetic algorithm, J. Appl. Soft Comput., 2008, vol. 8, pp. 1105–1111.CrossRef
3.
Zurück zum Zitat Carlos Ordonez, Association rule discover with the train and test approach for the heart disease prediction, IEEE Trans. Inf. Technol. Biomed., 2006, vol. 10, no. 2, pp. 334–343.CrossRef Carlos Ordonez, Association rule discover with the train and test approach for the heart disease prediction, IEEE Trans. Inf. Technol. Biomed., 2006, vol. 10, no. 2, pp. 334–343.CrossRef
4.
Zurück zum Zitat Kusiak, A., Caldarone, Ch.A., et al., Hypo plastic left heart syndrome knowledge discovery with a data mining approach, J. Comput. Biol. Med., 2006, vol. 36, no. 1, pp. 21–40. Kusiak, A., Caldarone, Ch.A., et al., Hypo plastic left heart syndrome knowledge discovery with a data mining approach, J. Comput. Biol. Med., 2006, vol. 36, no. 1, pp. 21–40.
5.
Zurück zum Zitat Babaoglu, I., Kaan Baykan, O., et al., Assessment of exercise stress testing with artificial neural network in determining coronary artery disease and predicting lesion localization, J. Expert Syst. Appl., 2009, vol. 36, pp. 2562–2566.CrossRef Babaoglu, I., Kaan Baykan, O., et al., Assessment of exercise stress testing with artificial neural network in determining coronary artery disease and predicting lesion localization, J. Expert Syst. Appl., 2009, vol. 36, pp. 2562–2566.CrossRef
6.
Zurück zum Zitat Rajeswari, K., Vaithiyanathan, V., et al., Feature selection in ischemic heart disease identification using feed forward neural networks, Int. Symposium on Robotics and Intelligent Sensors, 2012, vol. 41, pp. 1818–1823. Rajeswari, K., Vaithiyanathan, V., et al., Feature selection in ischemic heart disease identification using feed forward neural networks, Int. Symposium on Robotics and Intelligent Sensors, 2012, vol. 41, pp. 1818–1823.
7.
Zurück zum Zitat Mu-Jung Huang, Mu-Yen Chen, et al., Integrating data mining with case-based reasoning for chronic diseases prognosis and diagnosis, J. Expert Syst. Appl., 2007, vol. 32, pp. 856–867.CrossRef Mu-Jung Huang, Mu-Yen Chen, et al., Integrating data mining with case-based reasoning for chronic diseases prognosis and diagnosis, J. Expert Syst. Appl., 2007, vol. 32, pp. 856–867.CrossRef
8.
Zurück zum Zitat Tan, K.C., Teoh, E.J., et al., A hybrid evolutionary algorithm for attribute selection in data mining, J. Expert Syst. Appl., 2009, vol. 36, pp. 8616–8630.CrossRef Tan, K.C., Teoh, E.J., et al., A hybrid evolutionary algorithm for attribute selection in data mining, J. Expert Syst. Appl., 2009, vol. 36, pp. 8616–8630.CrossRef
9.
Zurück zum Zitat Jesmin Nahar, Tasadduq Imam, et al., Association rule mining to detect factors which contribute to heart disease in males and females, J. Expert Syst. Appl., 2013, vol. 40, pp. 1086–1093.CrossRef Jesmin Nahar, Tasadduq Imam, et al., Association rule mining to detect factors which contribute to heart disease in males and females, J. Expert Syst. Appl., 2013, vol. 40, pp. 1086–1093.CrossRef
10.
Zurück zum Zitat Austin, P.C., Tu, J.V., et al., Using methods from the data-mining and machine-learning literature for disease classification and prediction: A case study examining classification of heart failure subtypes, J. Clin. Epidemiol., 2013, vol. 66, pp. 398–407.CrossRef Austin, P.C., Tu, J.V., et al., Using methods from the data-mining and machine-learning literature for disease classification and prediction: A case study examining classification of heart failure subtypes, J. Clin. Epidemiol., 2013, vol. 66, pp. 398–407.CrossRef
11.
Zurück zum Zitat Kemal Polat and Salih Gunes, A new feature selection method on classification of medical datasets: Kernel F-score feature selection, J. Expert Syst. Appl., 2009, vol. 36, pp. 10367–10373. Kemal Polat and Salih Gunes, A new feature selection method on classification of medical datasets: Kernel F-score feature selection, J. Expert Syst. Appl., 2009, vol. 36, pp. 10367–10373.
12.
Zurück zum Zitat Babaoglu, I., Findik, O., et al., A comparison of feature selection models utilizing binary Particle Swarm Optimization and genetic algorithm in determining coronary artery disease using Support Vector Machine, J. Expert Syst. Appl., 2010, vol. 37, pp. 3177–3183.CrossRef Babaoglu, I., Findik, O., et al., A comparison of feature selection models utilizing binary Particle Swarm Optimization and genetic algorithm in determining coronary artery disease using Support Vector Machine, J. Expert Syst. Appl., 2010, vol. 37, pp. 3177–3183.CrossRef
13.
Zurück zum Zitat Jesmin Nahar, Tasadduq Imam, et al., Computational intelligence for heart disease diagnosis: A medical knowledge driven approach, J. Expert Syst. Appl., 2013, vol. 40, pp. 96–104.CrossRef Jesmin Nahar, Tasadduq Imam, et al., Computational intelligence for heart disease diagnosis: A medical knowledge driven approach, J. Expert Syst. Appl., 2013, vol. 40, pp. 96–104.CrossRef
14.
Zurück zum Zitat Setiawan, N.A. et al., A comparative study of imputation methods to predict missing attribute values in coronary heart disease data set, J. Dep. Electr. Electron. Eng., 2009, vol. 21, pp. 266–269. Setiawan, N.A. et al., A comparative study of imputation methods to predict missing attribute values in coronary heart disease data set, J. Dep. Electr. Electron. Eng., 2009, vol. 21, pp. 266–269.
15.
Zurück zum Zitat Luukka, P. and Lampinen, J., A classification method based on Principal Component Analysis and differential evolution algorithm applied for prediction diagnosis from clinical EMR heart data sets, J. Comput. Intell. Optimization Adaption, Learn. Optim., 2010, vol. 7, pp. 263–283.MATH Luukka, P. and Lampinen, J., A classification method based on Principal Component Analysis and differential evolution algorithm applied for prediction diagnosis from clinical EMR heart data sets, J. Comput. Intell. Optimization Adaption, Learn. Optim., 2010, vol. 7, pp. 263–283.MATH
16.
Zurück zum Zitat Das, R., Turkoglu, I., et al., Effective diagnosis of heart disease through neural networks ensembles, J. Expert Syst. Appl., 2009, vol. 36, pp. 7675–7680.CrossRef Das, R., Turkoglu, I., et al., Effective diagnosis of heart disease through neural networks ensembles, J. Expert Syst. Appl., 2009, vol. 36, pp. 7675–7680.CrossRef
17.
Zurück zum Zitat Das, R., Turkoglu, I., et al., Diagnosis of valvular heart disease through neural networks ensembles, J. Comput. Methods Programs Biomed., 2009, vol. 93, pp. 185–191.CrossRef Das, R., Turkoglu, I., et al., Diagnosis of valvular heart disease through neural networks ensembles, J. Comput. Methods Programs Biomed., 2009, vol. 93, pp. 185–191.CrossRef
18.
Zurück zum Zitat Chang-Sik Son, Yoon-Nyun Kim, et al., Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches, J. Biomed. Inf., 2012, vol. 45, pp. 999–1008.CrossRef Chang-Sik Son, Yoon-Nyun Kim, et al., Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches, J. Biomed. Inf., 2012, vol. 45, pp. 999–1008.CrossRef
19.
Zurück zum Zitat Laercio Brito Gonçalves, Marley Maria Bernardes Rebuzzi Vellasco, et al., Inverted hierarchical neuro-fuzzy BSP system: A novel neuro-fuzzy model for pattern classification and rule extraction in databases, J. IEEE Trans. Syst., Man, Cybernetics, 2006, vol. 36, no. 2. Laercio Brito Gonçalves, Marley Maria Bernardes Rebuzzi Vellasco, et al., Inverted hierarchical neuro-fuzzy BSP system: A novel neuro-fuzzy model for pattern classification and rule extraction in databases, J. IEEE Trans. Syst., Man, Cybernetics, 2006, vol. 36, no. 2.
20.
Zurück zum Zitat Kemal Polat and Salih Gunes, A hybrid approach to medical decision support systems: Combining feature selection, fuzzy weighted pre-processing and AIRS, J. Comput. Methods Progr. Biomed., 2007, vol. 88, pp. 164–174. Kemal Polat and Salih Gunes, A hybrid approach to medical decision support systems: Combining feature selection, fuzzy weighted pre-processing and AIRS, J. Comput. Methods Progr. Biomed., 2007, vol. 88, pp. 164–174.
21.
Zurück zum Zitat Kemal Polat, Seral Sahan, et al., Automatic detection of heart disease using an Artificial Immune Recognition System (AIRS) with fuzzy resource allocation mechanism and k-nn (nearest neighbor) based weighting preprocessing, J. Expert Syst. Appl., 2007, vol. 32, pp. 625–631.CrossRef Kemal Polat, Seral Sahan, et al., Automatic detection of heart disease using an Artificial Immune Recognition System (AIRS) with fuzzy resource allocation mechanism and k-nn (nearest neighbor) based weighting preprocessing, J. Expert Syst. Appl., 2007, vol. 32, pp. 625–631.CrossRef
22.
Zurück zum Zitat Akin Ozcift and Arif Gulten, Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms, J. Comput. Methods Progr. Biomed., 2011, vol. 104, pp. 443–451. Akin Ozcift and Arif Gulten, Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms, J. Comput. Methods Progr. Biomed., 2011, vol. 104, pp. 443–451.
23.
Zurück zum Zitat Chih-Lin Chi, Nick Street, W., et al., A decision support system for cost-effective diagnosis, J. Artif. Intell. Med., 2010, vol. 50, pp. 149–161.CrossRef Chih-Lin Chi, Nick Street, W., et al., A decision support system for cost-effective diagnosis, J. Artif. Intell. Med., 2010, vol. 50, pp. 149–161.CrossRef
24.
Zurück zum Zitat Yoon-Joo Park, Se-Hak Chun, et al., Cost-sensitive case-based reasoning using a genetic algorithm: Application to medical diagnosis, J. Artif. Intell. Med., 2011, vol. 51, pp. 133–145.CrossRef Yoon-Joo Park, Se-Hak Chun, et al., Cost-sensitive case-based reasoning using a genetic algorithm: Application to medical diagnosis, J. Artif. Intell. Med., 2011, vol. 51, pp. 133–145.CrossRef
25.
Zurück zum Zitat Debabrata Pal, Mandana, K.M., et al., Fuzzy expert system approach for coronary artery disease screening using clinical parameters, J. Knowl. Based Syst., 2012, vol. 36, pp. 162–174. Debabrata Pal, Mandana, K.M., et al., Fuzzy expert system approach for coronary artery disease screening using clinical parameters, J. Knowl. Based Syst., 2012, vol. 36, pp. 162–174.
26.
Zurück zum Zitat Kahramanli, H. and Allahverdi, N., Design of a hybrid system for the diabetes and heart diseases, J. Expert Syst. Appl., 2008, vol. 35, pp. 82–89.CrossRef Kahramanli, H. and Allahverdi, N., Design of a hybrid system for the diabetes and heart diseases, J. Expert Syst. Appl., 2008, vol. 35, pp. 82–89.CrossRef
27.
Zurück zum Zitat Vahid Khatibi and Gholam Ali Montazer, A fuzzy-evidential hybrid inference engine for coronary heart disease risk assessment, J. Expert Syst. Appl., 2010, vol. 37, pp. 8536–8542. Vahid Khatibi and Gholam Ali Montazer, A fuzzy-evidential hybrid inference engine for coronary heart disease risk assessment, J. Expert Syst. Appl., 2010, vol. 37, pp. 8536–8542.
28.
Zurück zum Zitat Goekmen Turan, R., Bozdag, I., et al., Improved functional activity of bone marrow derived circulating progenitor cells after intra coronary freshly isolated bone marrow cells transplantation in patients with ischemic heart disease, J. Stem Cell Rev. Rep., 2011, vol. 7, pp.646–656.CrossRef Goekmen Turan, R., Bozdag, I., et al., Improved functional activity of bone marrow derived circulating progenitor cells after intra coronary freshly isolated bone marrow cells transplantation in patients with ischemic heart disease, J. Stem Cell Rev. Rep., 2011, vol. 7, pp.646–656.CrossRef
29.
Zurück zum Zitat Karsdorp, P.A., Kindt, M., et al., False heart rate feedback and the perception of heart symptoms in patients with congenital heart disease and anxiety, Int. J. Behav. Med., 2009, vol. 16, pp. 81–88.CrossRef Karsdorp, P.A., Kindt, M., et al., False heart rate feedback and the perception of heart symptoms in patients with congenital heart disease and anxiety, Int. J. Behav. Med., 2009, vol. 16, pp. 81–88.CrossRef
30.
Zurück zum Zitat Carlosnasillo/Hybrid-Genetic-Algorithm, 2017. GitHub. https://github.com/carlosnasillo/Hybrid-Genetic-Algorithm. Retrieved October 22, 2017. Carlosnasillo/Hybrid-Genetic-Algorithm, 2017. GitHub. https://​github.​com/​carlosnasillo/​Hybrid-Genetic-Algorithm.​ Retrieved October 22, 2017.
31.
Zurück zum Zitat Muthukaruppan, S. and Er, M.J., A hybrid Particle Swarm Optimization based fuzzy expert system for the diagnosis of coronary artery disease, J. Expert Syst. Appl., 2012, vol. 39, pp. 11657–11665.CrossRef Muthukaruppan, S. and Er, M.J., A hybrid Particle Swarm Optimization based fuzzy expert system for the diagnosis of coronary artery disease, J. Expert Syst. Appl., 2012, vol. 39, pp. 11657–11665.CrossRef
32.
Zurück zum Zitat Anooj, P.K., Clinical decision support system: Risk level prediction of heart disease using weighted fuzzy rules, J. Comput. Inf. Sci., 2012, vol. 24, pp. 27–40. Anooj, P.K., Clinical decision support system: Risk level prediction of heart disease using weighted fuzzy rules, J. Comput. Inf. Sci., 2012, vol. 24, pp. 27–40.
33.
Zurück zum Zitat Tsipouras, M.G., Exarchos, T.P., et al., Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling, J. IEEE Trans. Inf. Technol. Biomed., 2008, vol. 12, no. 4. Tsipouras, M.G., Exarchos, T.P., et al., Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling, J. IEEE Trans. Inf. Technol. Biomed., 2008, vol. 12, no. 4.
34.
Zurück zum Zitat Paredesa, S. et al., Long term cardiovascular risk models’ combination, J. Comput. Methods Progr. Biomed., 2011, vol. 101, pp. 231–242.CrossRef Paredesa, S. et al., Long term cardiovascular risk models’ combination, J. Comput. Methods Progr. Biomed., 2011, vol. 101, pp. 231–242.CrossRef
35.
Zurück zum Zitat Swati Shilaskar et al., Feature selection for medical diagnosis: Evaluation for cardiovascular diseases, J. Expert Syst. Appl., 2013, vol. 40, pp. 4146–4153. Swati Shilaskar et al., Feature selection for medical diagnosis: Evaluation for cardiovascular diseases, J. Expert Syst. Appl., 2013, vol. 40, pp. 4146–4153.
36.
Zurück zum Zitat UCI Machine Learning Repository: Heart Disease Data Set. Archive.ics.uci.edu. http://archive.ics.uci. edu/ml/datasets/Heart+Disease. Retrieved October 22, 2017. UCI Machine Learning Repository: Heart Disease Data Set. Archive.ics.uci.edu. http://​archive.​ics.​uci.​ edu/ml/datasets/Heart+Disease. Retrieved October 22, 2017.
37.
Zurück zum Zitat Zhao, M., Fu, C., Ji, L., Tang, K., and Zhou, M., Feature selection and parameter optimization for Support Vector Machines: A new approach based on genetic algorithm with feature chromosomes, Expert Syst. Appl., 2011, vol. 38, no. 5, pp. 5197–5204.CrossRef Zhao, M., Fu, C., Ji, L., Tang, K., and Zhou, M., Feature selection and parameter optimization for Support Vector Machines: A new approach based on genetic algorithm with feature chromosomes, Expert Syst. Appl., 2011, vol. 38, no. 5, pp. 5197–5204.CrossRef
38.
Zurück zum Zitat Li-Na Pu, Ze Zhao, et al., Investigation on cardiovascular risk prediction using genetic information, J. IEEE Trans. Inf. Technol., Biomed., 2012, vol. 16, no. 5. Li-Na Pu, Ze Zhao, et al., Investigation on cardiovascular risk prediction using genetic information, J. IEEE Trans. Inf. Technol., Biomed., 2012, vol. 16, no. 5.
39.
Zurück zum Zitat Pfister, R., Barnes, D., et al., Individual and cumulative effect of type 2 diabetes genetic susceptibility variants on risk of coronary heart disease, J. Diabetologia, 2011, vol. 54, pp. 2283–2287.CrossRef Pfister, R., Barnes, D., et al., Individual and cumulative effect of type 2 diabetes genetic susceptibility variants on risk of coronary heart disease, J. Diabetologia, 2011, vol. 54, pp. 2283–2287.CrossRef
40.
Zurück zum Zitat Nazri Mohd Nawi, Rozaida Ghazali, et al., The development of improved back-propagation neural networks algorithm for predicting patients with heart disease, in Proceedings of the First International Conference ICICA, 2010, vol. 6377, pp. 317–324. Nazri Mohd Nawi, Rozaida Ghazali, et al., The development of improved back-propagation neural networks algorithm for predicting patients with heart disease, in Proceedings of the First International Conference ICICA, 2010, vol. 6377, pp. 317–324.
41.
Zurück zum Zitat Jae-Hong Eom, Sung-Chun Kim, et al., AptaCDSS-E: A classifier ensemble-based clinical decision support system for cardiovascular disease level prediction, J. Expert Syst. Appl., 2008, vol. 34 2465, p. 2479.CrossRef Jae-Hong Eom, Sung-Chun Kim, et al., AptaCDSS-E: A classifier ensemble-based clinical decision support system for cardiovascular disease level prediction, J. Expert Syst. Appl., 2008, vol. 34 2465, p. 2479.CrossRef
42.
Zurück zum Zitat Iftikhar, S., Fatima, K., Rehman, A., Almazyad, A.S., and Saba, T., An evolution based hybrid approach for heart diseases classification and associated risk factors identification, Biomed. Res., 2017, vol. 28, no. 8. Iftikhar, S., Fatima, K., Rehman, A., Almazyad, A.S., and Saba, T., An evolution based hybrid approach for heart diseases classification and associated risk factors identification, Biomed. Res., 2017, vol. 28, no. 8.
43.
Zurück zum Zitat Shah, S.M.S., Batool, S., Khan, I., Ashraf, M.U., Abbas, S.H., and Hussain, S.A., Feature extraction through parallel probabilistic Principal Component Analysis for heart disease diagnosis, Phys. A: Statistical Mechanics and Its Applications, 2017, vol. 482, pp. 796–807.CrossRef Shah, S.M.S., Batool, S., Khan, I., Ashraf, M.U., Abbas, S.H., and Hussain, S.A., Feature extraction through parallel probabilistic Principal Component Analysis for heart disease diagnosis, Phys. A: Statistical Mechanics and Its Applications, 2017, vol. 482, pp. 796–807.CrossRef
44.
Zurück zum Zitat Arabasadi, Z., Alizadehsani, R., Roshanzamir, M., Moosaei, H., and Yarifard, A.A., Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm, Comput. Methods Progr. Biomed., 2017, vol. 141, pp. 19–26.CrossRef Arabasadi, Z., Alizadehsani, R., Roshanzamir, M., Moosaei, H., and Yarifard, A.A., Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm, Comput. Methods Progr. Biomed., 2017, vol. 141, pp. 19–26.CrossRef
45.
Zurück zum Zitat Li, Q., Chen, H., Huang, H., Zhao, X., Cai, Z., Tong, C., and Tian, X., An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis, Comput. Math. Methods Med., 2017. Li, Q., Chen, H., Huang, H., Zhao, X., Cai, Z., Tong, C., and Tian, X., An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis, Comput. Math. Methods Med., 2017.
46.
Zurück zum Zitat Vivekanandan, T. and Iyengar, N.C.S.N., Optimal feature selection using a modified differential evolution algorithm and its effectiveness for prediction of heart disease, Comput. Biol. Med., 2017, vol. 90, pp. 125–136.CrossRef Vivekanandan, T. and Iyengar, N.C.S.N., Optimal feature selection using a modified differential evolution algorithm and its effectiveness for prediction of heart disease, Comput. Biol. Med., 2017, vol. 90, pp. 125–136.CrossRef
47.
Zurück zum Zitat Jabbar, M.A., Deekshatulu, B.L., and Chandra, P., Prediction of heart disease using random forest and feature subset selection, in Innovations in Bio-Inspired Computing and Applications, Cham.; Springer, 2016, pp. 187–196. Jabbar, M.A., Deekshatulu, B.L., and Chandra, P., Prediction of heart disease using random forest and feature subset selection, in Innovations in Bio-Inspired Computing and Applications, Cham.; Springer, 2016, pp. 187–196.
48.
Zurück zum Zitat Paul, A.K., Shill, P.C., Rabin, M.R.I., and Akhand, M.A.H., Genetic algorithm based fuzzy decision support system for the diagnosis of heart disease, in Informatics, Electronics and Vision (ICIEV), 2016 5th International Conference, IEEE, 2016, pp. 145–150. Paul, A.K., Shill, P.C., Rabin, M.R.I., and Akhand, M.A.H., Genetic algorithm based fuzzy decision support system for the diagnosis of heart disease, in Informatics, Electronics and Vision (ICIEV), 2016 5th International Conference, IEEE, 2016, pp. 145–150.
49.
Zurück zum Zitat Inbarani, H.H., Azar, A.T., and Jothi, G., Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis, Comput. Methods Progr. Biomed., 2014, vol. 113, no. 1, pp. 175–185.CrossRef Inbarani, H.H., Azar, A.T., and Jothi, G., Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis, Comput. Methods Progr. Biomed., 2014, vol. 113, no. 1, pp. 175–185.CrossRef
50.
Zurück zum Zitat Tomar, D. and Agarwal, S., Feature selection based Least Square Twin Support Vector Machine for diagnosis of heart disease, Int. J. Bio-Sci. Bio-Technol., 2014, vol. 6, no. 2, pp. 69–82. Tomar, D. and Agarwal, S., Feature selection based Least Square Twin Support Vector Machine for diagnosis of heart disease, Int. J. Bio-Sci. Bio-Technol., 2014, vol. 6, no. 2, pp. 69–82.
51.
Zurück zum Zitat Reddy, G.T. and Khare, N., An efficient system for heart disease prediction using hybrid OFBAT with rule-based Fuzzy Logic Model, J. Circuits, Syst. Comput., 2017, vol. 26, no. 04, p. 1750061.CrossRef Reddy, G.T. and Khare, N., An efficient system for heart disease prediction using hybrid OFBAT with rule-based Fuzzy Logic Model, J. Circuits, Syst. Comput., 2017, vol. 26, no. 04, p. 1750061.CrossRef
52.
Zurück zum Zitat Pimentel, A., Coronary heart disease prognosis using machine-learning techniques on patients with type 2 Diabetes Mellitus, in Ubiquitous Machine Learning and Its Applications, IGI Global, 2017, pp. 89–112. Pimentel, A., Coronary heart disease prognosis using machine-learning techniques on patients with type 2 Diabetes Mellitus, in Ubiquitous Machine Learning and Its Applications, IGI Global, 2017, pp. 89–112.
Metadaten
Titel
A Machine Learning Framework for Feature Selection in Heart Disease Classification Using Improved Particle Swarm Optimization with Support Vector Machine Classifier
verfasst von
J. Vijayashree
H. Parveen Sultana
Publikationsdatum
01.11.2018
Verlag
Pleiades Publishing
Erschienen in
Programming and Computer Software / Ausgabe 6/2018
Print ISSN: 0361-7688
Elektronische ISSN: 1608-3261
DOI
https://doi.org/10.1134/S0361768818060129

Weitere Artikel der Ausgabe 6/2018

Programming and Computer Software 6/2018 Zur Ausgabe