Skip to main content
Erschienen in: Russian Journal of Nondestructive Testing 5/2019

01.05.2019 | RADIATION METHODS

A Mathematical Model of Digital Linear Tomography

verfasst von: S. P. Osipov, E. Yu. Usachev, S. V. Chakhlov, S. A. Schetinkin, A. A. Manushkin, O. S. Osipov, N. A. Sergeeva

Erschienen in: Russian Journal of Nondestructive Testing | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A mathematical model of digital linear tomography has been developed that takes into account the geometrical parameters of the scheme of testing, the depth of the layer of interest, the maximum energy of X-rays, the design of the digital detector, and the digit capacity of the analog-to-digital converter. The mathematical model is implemented in the MathCad software for engineering calculations. The results of a computational experiment are presented that confirm the possibility of producing the image of a layer with significantly reduced interference from images of other layers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Glasser, O., WC Roentgen and the discovery of the Roentgen rays, AJR, Am. J. Roentgenol., 1995, vol. 165, no. 5, pp. 1033–1040.CrossRef Glasser, O., WC Roentgen and the discovery of the Roentgen rays, AJR, Am. J. Roentgenol., 1995, vol. 165, no. 5, pp. 1033–1040.CrossRef
2.
Zurück zum Zitat Goodman, P.C., The new light: discovery and introduction of the X-ray, AJR, Am. J. Roentgenol., 1995, vol. 165, no. 5, pp. 1041–1045.CrossRef Goodman, P.C., The new light: discovery and introduction of the X-ray, AJR, Am. J. Roentgenol., 1995, vol. 165, no. 5, pp. 1041–1045.CrossRef
3.
Zurück zum Zitat Singh, R., The Nobel Laureate WC Roentgen and his X-Rays, Indian J. Hist. Sci., 2016, vol. 51, pp. 521–530. Singh, R., The Nobel Laureate WC Roentgen and his X-Rays, Indian J. Hist. Sci., 2016, vol. 51, pp. 521–530.
4.
Zurück zum Zitat Korner, M., Weber, C.H., Wirth, S., Pfeifer, K.J., Reiser, M.F., and Treitl, M., Advances in digital radiography: physical principles and system overview, Radiographics, 2007, vol. 27, no. 3, pp. 675–686.CrossRef Korner, M., Weber, C.H., Wirth, S., Pfeifer, K.J., Reiser, M.F., and Treitl, M., Advances in digital radiography: physical principles and system overview, Radiographics, 2007, vol. 27, no. 3, pp. 675–686.CrossRef
5.
Zurück zum Zitat Seynaeve, P.C. and Broos, J.I., The history of tomography, J. Belge Radiol., 1995, vol. 78, no. 5, pp. 284–288. Seynaeve, P.C. and Broos, J.I., The history of tomography, J. Belge Radiol., 1995, vol. 78, no. 5, pp. 284–288.
6.
Zurück zum Zitat Bocage, M., Procede et dispositifs de radiographie sur plaque en movement, Franz Patentschrift, 1922, vol. 536, p. 464. Bocage, M., Procede et dispositifs de radiographie sur plaque en movement, Franz Patentschrift, 1922, vol. 536, p. 464.
7.
Zurück zum Zitat Friedland, G.W. and Thurber, B.D., The birth of CT, AJR, Am. J. Roentgenol., 1996, vol. 167, no. 6, pp. 1365–1370.CrossRef Friedland, G.W. and Thurber, B.D., The birth of CT, AJR, Am. J. Roentgenol., 1996, vol. 167, no. 6, pp. 1365–1370.CrossRef
8.
Zurück zum Zitat Kalender, W.A., Computed Tomography: Fundamentals, System Technology, Image Quality, Applications, Publicis Corp. Publ., 2005, 2nd Ed. Kalender, W.A., Computed Tomography: Fundamentals, System Technology, Image Quality, Applications, Publicis Corp. Publ., 2005, 2nd Ed.
9.
Zurück zum Zitat Dobbins, J.T., Tomosynthesis imaging: at a translational crossroads, Med. Phys., 2009, vol. 36, no. 6, part 1, pp. 1956–1967. Dobbins, J.T., Tomosynthesis imaging: at a translational crossroads, Med. Phys., 2009, vol. 36, no. 6, part 1, pp. 1956–1967.
10.
Zurück zum Zitat Nikitin, M.M. and Ratobyl’skii, G.V., Digital tomosynthesis in the diagnosis and monitoring of the effectiveness of treatment of respiratory tuberculosis (literature review), Med. Vizualizatsiya, 2016, no. 3, pp. 95–102. Nikitin, M.M. and Ratobyl’skii, G.V., Digital tomosynthesis in the diagnosis and monitoring of the effectiveness of treatment of respiratory tuberculosis (literature review), Med. Vizualizatsiya, 2016, no. 3, pp. 95–102.
11.
Zurück zum Zitat Nevgasymyi, A.A., Miroshnichenko, N.S., and Miroshnichenko, S.I., Modification of the digital radiographic units with the linear tomography mode to units with the tomosynthesis mode, in 38th Int. Conf. Electron. Nanotechnol. (ELNANO), IEEE, 2018, pp. 402–405. Nevgasymyi, A.A., Miroshnichenko, N.S., and Miroshnichenko, S.I., Modification of the digital radiographic units with the linear tomography mode to units with the tomosynthesis mode, in 38th Int. Conf. Electron. Nanotechnol. (ELNANO), IEEE, 2018, pp. 402–405.
12.
Zurück zum Zitat Senchurov, S. and Motolyga, O., The enhancement of the linear X-Ray tomography with digital tomosynthesis algorithms, in XXXIII Int. Sci. Conf. (ELNANO), IEEE, 2013, pp. 319–321. Senchurov, S. and Motolyga, O., The enhancement of the linear X-Ray tomography with digital tomosynthesis algorithms, in XXXIII Int. Sci. Conf. (ELNANO), IEEE, 2013, pp. 319–321.
13.
Zurück zum Zitat Gomi, T., Hirano, H., Nakajima, M., and Umeda, T., X-ray digital linear tomosynthesis imaging, J. Biomed. Sci. Eng., 2011, vol. 4, no. 6, pp. 443–453.CrossRef Gomi, T., Hirano, H., Nakajima, M., and Umeda, T., X-ray digital linear tomosynthesis imaging, J. Biomed. Sci. Eng., 2011, vol. 4, no. 6, pp. 443–453.CrossRef
14.
Zurück zum Zitat Dobbins III, J.T. and Godfrey, D.J., Digital X-ray tomosynthesis: current state of the art and clinical potential, Phys. Med. Biol., 2003, vol. 48, no. 19, pp. R65–R106.CrossRef Dobbins III, J.T. and Godfrey, D.J., Digital X-ray tomosynthesis: current state of the art and clinical potential, Phys. Med. Biol., 2003, vol. 48, no. 19, pp. R65–R106.CrossRef
15.
Zurück zum Zitat Kanter, B.M., Artemiev, B.V., Vladimirov, L.V., and Artemyev, I.B., Challenges in X-ray medical diagnosis, Biomed. Eng., 2017, vol. 50, no. 6, pp. 410–415.CrossRef Kanter, B.M., Artemiev, B.V., Vladimirov, L.V., and Artemyev, I.B., Challenges in X-ray medical diagnosis, Biomed. Eng., 2017, vol. 50, no. 6, pp. 410–415.CrossRef
16.
Zurück zum Zitat Wakimoto, K., Blunt, J., Carlos, C., Monteiro, P.J., Ostertag, C.P., and Albert, R., Digital laminography assessment of the damage in concrete exposed to freezing temperatures, Cem. Concr. Res., 2008, vol. 38, no. 10, pp. 1232–1245.CrossRef Wakimoto, K., Blunt, J., Carlos, C., Monteiro, P.J., Ostertag, C.P., and Albert, R., Digital laminography assessment of the damage in concrete exposed to freezing temperatures, Cem. Concr. Res., 2008, vol. 38, no. 10, pp. 1232–1245.CrossRef
17.
Zurück zum Zitat Shi, X., Fu, J., Wang, J., Yuan, Q., Huang, W., Zhang, K., Zhu, P., and Jiang, B., Development of synchrotron radiation computed laminography for plate-shell structures, Sel. Pap. Chin. Soc. Opt. Eng. Conf. held October and November 2016, Int. Soc. Opt. Photonics, 2017, vol. 10255, article no. 102551M. Shi, X., Fu, J., Wang, J., Yuan, Q., Huang, W., Zhang, K., Zhu, P., and Jiang, B., Development of synchrotron radiation computed laminography for plate-shell structures, Sel. Pap. Chin. Soc. Opt. Eng. Conf. held October and November 2016, Int. Soc. Opt. Photonics, 2017, vol. 10255, article no. 102551M.
18.
Zurück zum Zitat Tada, M. and Matsui, H., Computed laminography XAFS/XAFS Techniques for Catalysts, Nanomaterials, and Surfaces, Springer, Cham, 2017, pp. 149–155. Tada, M. and Matsui, H., Computed laminography XAFS/XAFS Techniques for Catalysts, Nanomaterials, and Surfaces, Springer, Cham, 2017, pp. 149–155.
19.
Zurück zum Zitat Zhu, H., Roehrig, H., and Hayworth, M., Method for improving image quality in digital linear tomography, Image Vision Comput., 1986, vol. 4, no. 1, pp. 25–28.CrossRef Zhu, H., Roehrig, H., and Hayworth, M., Method for improving image quality in digital linear tomography, Image Vision Comput., 1986, vol. 4, no. 1, pp. 25–28.CrossRef
20.
Zurück zum Zitat Voronkov, O.Yu. and Sinyutin, S.A., The method of obtaining radial sums in modeling installations for tomosynthesis based on the Bresenham’s line algorithm, Izv. Yuzhn. Fed. Univ. Tekh. Nauki, 2017, no. 6 (191), pp. 189–200. Voronkov, O.Yu. and Sinyutin, S.A., The method of obtaining radial sums in modeling installations for tomosynthesis based on the Bresenham’s line algorithm, Izv. Yuzhn. Fed. Univ. Tekh. Nauki, 2017, no. 6 (191), pp. 189–200.
21.
Zurück zum Zitat Ge, J., Chan, H.P., Sahiner, B., Zhang, Y., Wei, J., Hadjiiski, L.M., and Zhou, C., Digital tomosynthesis mammography: Intra-and interplane artifact reduction for high-contrast objects on reconstructed slices using a priori 3D geometrical information, Med. Imaging 2007: Image Process., Int. Soc. Opt. Photonics, 2007, vol. 6512, article no. 65124Q. Ge, J., Chan, H.P., Sahiner, B., Zhang, Y., Wei, J., Hadjiiski, L.M., and Zhou, C., Digital tomosynthesis mammography: Intra-and interplane artifact reduction for high-contrast objects on reconstructed slices using a priori 3D geometrical information, Med. Imaging 2007: Image Process., Int. Soc. Opt. Photonics, 2007, vol. 6512, article no. 65124Q.
22.
Zurück zum Zitat Buzzi, A.E. and Suárez, M.V., Tomografía lineal: nacimiento, gloria y ocaso de un método, Revista Argentina de Radiología, 2013, vol. 77, no. 3, pp. 236–244.CrossRef Buzzi, A.E. and Suárez, M.V., Tomografía lineal: nacimiento, gloria y ocaso de un método, Revista Argentina de Radiología, 2013, vol. 77, no. 3, pp. 236–244.CrossRef
23.
Zurück zum Zitat Gondrom, S., Zhou, J., Maisl, M., Reiter, H., Kröning, M., and Arnold, W., X-ray computed laminography: an approach of computed tomography for applications with limited access, Nucl. Eng. Des., 1999, vol. 190, nos. 1–2, pp. 141–147. Gondrom, S., Zhou, J., Maisl, M., Reiter, H., Kröning, M., and Arnold, W., X-ray computed laminography: an approach of computed tomography for applications with limited access, Nucl. Eng. Des., 1999, vol. 190, nos. 1–2, pp. 141–147.
24.
Zurück zum Zitat Udod, V.A., Osipov, S.P., and Wang, Y., The mathematical model of image, generated by scanning digital radiography system, IOP Conf. Ser.: Mater. Sci. Eng., IOP Publ., 2017, vol. 168, no. 1, article no. 012042. Udod, V.A., Osipov, S.P., and Wang, Y., The mathematical model of image, generated by scanning digital radiography system, IOP Conf. Ser.: Mater. Sci. Eng., IOP Publ., 2017, vol. 168, no. 1, article no. 012042.
25.
Zurück zum Zitat Ewert, U., Baranov, V. A., and Borchardt, K., Cross-sectional imaging of building elements by new non-linear tomosynthesis techniques using imaging plates and 60Co radiation, NDT & E Int., 1997, vol. 30, no. 4, pp. 243–248.CrossRef Ewert, U., Baranov, V. A., and Borchardt, K., Cross-sectional imaging of building elements by new non-linear tomosynthesis techniques using imaging plates and 60Co radiation, NDT & E Int., 1997, vol. 30, no. 4, pp. 243–248.CrossRef
26.
Zurück zum Zitat Kούκου, B., Methodology development for breast cancer diagnosis using dual energy X-rays and digital tomosynthesis, Doct. Dissertation, Rio-Patras, Greece: Univ. Patras, 2017. Kούκου, B., Methodology development for breast cancer diagnosis using dual energy X-rays and digital tomosynthesis, Doct. Dissertation, Rio-Patras, Greece: Univ. Patras, 2017.
27.
Zurück zum Zitat Gomi, T., Sakai, R., Goto, M., Hara, H., and Watanabe, Y., Development of a novel algorithm for metal artifact reduction in digital tomosynthesis using projection-based dual-energy material decomposition for arthroplasty: A phantom study, Phys. Med., 2018, vol. 53, pp. 4–16.CrossRef Gomi, T., Sakai, R., Goto, M., Hara, H., and Watanabe, Y., Development of a novel algorithm for metal artifact reduction in digital tomosynthesis using projection-based dual-energy material decomposition for arthroplasty: A phantom study, Phys. Med., 2018, vol. 53, pp. 4–16.CrossRef
Metadaten
Titel
A Mathematical Model of Digital Linear Tomography
verfasst von
S. P. Osipov
E. Yu. Usachev
S. V. Chakhlov
S. A. Schetinkin
A. A. Manushkin
O. S. Osipov
N. A. Sergeeva
Publikationsdatum
01.05.2019
Verlag
Pleiades Publishing
Erschienen in
Russian Journal of Nondestructive Testing / Ausgabe 5/2019
Print ISSN: 1061-8309
Elektronische ISSN: 1608-3385
DOI
https://doi.org/10.1134/S1061830919050085

Weitere Artikel der Ausgabe 5/2019

Russian Journal of Nondestructive Testing 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.