Skip to main content
Erschienen in: Journal of Nondestructive Evaluation 3/2015

01.09.2015

A Methodology for Identifying Defects in the Magnetic Flux Leakage Method and Suggestions for Standard Specimens

verfasst von: Yanhua Sun, Bo Feng, Shiwei Liu, Zhijian Ye, Shaobo Chen, Yihua Kang

Erschienen in: Journal of Nondestructive Evaluation | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In magnetic flux leakage (MFL) testing technology, the MFL signals are thought to result from all defects and are used in their evaluation. The tested defects include two types of defects, concave and bump-shaped features, and recently described mechanisms in the MFL method indicate that the former defects produce positive MFL because of magnetic refraction and the latter ones produce negative magnetic fields because of self-magnetization regulation; consequently, these defects result in raised test signal waves and sunken test signal waves, respectively. Thereby, a new methodology for accurately identifying the defect type based on the mapping relation between the signal features and defect types is proposed. Both simulations and experiments with three representative defects (i.e., notch, protrusion and combination) were conducted to confirm their identification using this new methodology. Combined with MFL standards such as American Society for Testing and Materials (ASTM) E570-09 (Standard Practice for Flux Leakage Examination of Ferromagnetic Steel Tubular Products, 2009) and British Standards (BS) EN 10246-4 (Non-destructive Testing of Steel Tubes—Part 4: Automatic Full Peripheral Magnetic Transducer/Flux Leakage Testing of Seamless Ferromagnetic Steel Tubes for the Detection of Transverse Imperfections, 2007), suggestions for standard specimens with reference defects that consist of both types of defects are provided.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Spierer, E., Harbor, B.: Apparatus and process for flux leakage testing using transverse and vectored magnetization, US Patent 4477776, 1984 Spierer, E., Harbor, B.: Apparatus and process for flux leakage testing using transverse and vectored magnetization, US Patent 4477776, 1984
2.
Zurück zum Zitat Förster, F.: New findings in the field of nondestructive magnetic leakage field inspection. NDT Int. 19(1), 3–13 (1986)CrossRef Förster, F.: New findings in the field of nondestructive magnetic leakage field inspection. NDT Int. 19(1), 3–13 (1986)CrossRef
3.
Zurück zum Zitat Hwang, J., Lord, W.: Finite element modeling of magnetic field/defect interactions. ASTM J. Test. Eval. 3(1), 21–25 (1975)CrossRef Hwang, J., Lord, W.: Finite element modeling of magnetic field/defect interactions. ASTM J. Test. Eval. 3(1), 21–25 (1975)CrossRef
4.
Zurück zum Zitat Edwards, C., Palmer, S.: The magnetic leakage field of surface breaking cracks. J. Phys. D Appl. Phys. 19, 657–673 (1986)CrossRef Edwards, C., Palmer, S.: The magnetic leakage field of surface breaking cracks. J. Phys. D Appl. Phys. 19, 657–673 (1986)CrossRef
5.
Zurück zum Zitat Atherton, D.L., Daly, M.G.: Finite element calculation of magnetic flux leakage detector signals. NDT Int. 20, 235–238 (1987)CrossRef Atherton, D.L., Daly, M.G.: Finite element calculation of magnetic flux leakage detector signals. NDT Int. 20, 235–238 (1987)CrossRef
6.
Zurück zum Zitat Sun, Y.H., Kang, Y.H.: High-speed magnetic flux leakage technique and apparatus based on orthogonal magnetization for steel pipe. Mater. Eval. 68(4), 452–458 (2010) Sun, Y.H., Kang, Y.H.: High-speed magnetic flux leakage technique and apparatus based on orthogonal magnetization for steel pipe. Mater. Eval. 68(4), 452–458 (2010)
7.
Zurück zum Zitat Eickemeyer, R.: Magnetic gage for testing the magnetic conductivity of metals, US Patent 413338, 1889 Eickemeyer, R.: Magnetic gage for testing the magnetic conductivity of metals, US Patent 413338, 1889
8.
Zurück zum Zitat Burrows, C.W.: Method of and apparatus for testing magnetizable objects by magnetic leakage, US Patent 1322405, 1919 Burrows, C.W.: Method of and apparatus for testing magnetizable objects by magnetic leakage, US Patent 1322405, 1919
9.
Zurück zum Zitat Dutta, S., Ghorbel, F., Stanley, R.: Dipole modeling of magnetic flux leakage. IEEE Trans. Magn. 45(4), 1959–1965 (2009)CrossRef Dutta, S., Ghorbel, F., Stanley, R.: Dipole modeling of magnetic flux leakage. IEEE Trans. Magn. 45(4), 1959–1965 (2009)CrossRef
10.
Zurück zum Zitat Li, Y., Wilson, J., Tian, G.Y.: Experiment and simulation study of 3D magnetic field sensing for magnetic flux leakage defect characterization. NDT Int. 40(2), 179–184 (2007)CrossRef Li, Y., Wilson, J., Tian, G.Y.: Experiment and simulation study of 3D magnetic field sensing for magnetic flux leakage defect characterization. NDT Int. 40(2), 179–184 (2007)CrossRef
11.
Zurück zum Zitat Tsukada, K., Yoshioka, M., Kawasaki, Y., Kiwa, T.: Detection of back-side pit on a ferrous plate by magnetic flux leakage method with analyzing magnetic field vector. NDT E Int. 43, 323–328 (2003)CrossRef Tsukada, K., Yoshioka, M., Kawasaki, Y., Kiwa, T.: Detection of back-side pit on a ferrous plate by magnetic flux leakage method with analyzing magnetic field vector. NDT E Int. 43, 323–328 (2003)CrossRef
12.
Zurück zum Zitat Katragadda, G., Si, J.T., Lord, W., Sun, Y.S., Udpa, S., Udpa, L.: A comparative study of 3D and axisymmetric magnetizer assemblies used in magnetic flux leakage inspection of pipelines. IEEE Trans. Magn. 32(3), 1573–1576 (1996)CrossRef Katragadda, G., Si, J.T., Lord, W., Sun, Y.S., Udpa, S., Udpa, L.: A comparative study of 3D and axisymmetric magnetizer assemblies used in magnetic flux leakage inspection of pipelines. IEEE Trans. Magn. 32(3), 1573–1576 (1996)CrossRef
13.
Zurück zum Zitat Le, M., Lee, J., Jun, J., Kim, J., Moh, S., Shin, K.: Hall sensor array based validation of estimation of crack size in metals using magnetic dipole models. NDT E Int. 53, 18–25 (2013)CrossRef Le, M., Lee, J., Jun, J., Kim, J., Moh, S., Shin, K.: Hall sensor array based validation of estimation of crack size in metals using magnetic dipole models. NDT E Int. 53, 18–25 (2013)CrossRef
14.
Zurück zum Zitat Mukhopadhyay, S., Srivastava, G.P.: Characterisation of metal loss defects from magnetic flux leakage signals with discrete wavelet transform. NDT E Int. 33, 57–65 (2000)CrossRef Mukhopadhyay, S., Srivastava, G.P.: Characterisation of metal loss defects from magnetic flux leakage signals with discrete wavelet transform. NDT E Int. 33, 57–65 (2000)CrossRef
15.
Zurück zum Zitat Katoh, M., Nishio, K., Yamaguchi, T.: The influence of modeled B-H curve on the density of the magnetic leakage flux due to a flaw using yoke-magnetization. NDT E Int. 37(8), 603–609 (2004)CrossRef Katoh, M., Nishio, K., Yamaguchi, T.: The influence of modeled B-H curve on the density of the magnetic leakage flux due to a flaw using yoke-magnetization. NDT E Int. 37(8), 603–609 (2004)CrossRef
16.
Zurück zum Zitat Dutta, S.M., Ghorbel, F.H., Stanley, R.K.: Simulation and analysis of 3-D magnetic flux leakage. IEEE Trans. Magn. 45(4), 1966–1972 (2009)CrossRef Dutta, S.M., Ghorbel, F.H., Stanley, R.K.: Simulation and analysis of 3-D magnetic flux leakage. IEEE Trans. Magn. 45(4), 1966–1972 (2009)CrossRef
17.
Zurück zum Zitat Krause, T.W., Donaldson, R.M., Barnes, R., Atherton, D.L.: Variation of the stress dependent magnetic flux leakage signal with defect depth and flux density. NDT E Int. 29(2), 79–86 (1996)CrossRef Krause, T.W., Donaldson, R.M., Barnes, R., Atherton, D.L.: Variation of the stress dependent magnetic flux leakage signal with defect depth and flux density. NDT E Int. 29(2), 79–86 (1996)CrossRef
18.
Zurück zum Zitat Li, X.M., Ding, H.S., Bai, S.W.: Research on the stress-magnetism effect of ferromagnetic materials based on three-dimensional magnetic flux leakage testing. NDT E Int. 62, 50–54 (2014)CrossRef Li, X.M., Ding, H.S., Bai, S.W.: Research on the stress-magnetism effect of ferromagnetic materials based on three-dimensional magnetic flux leakage testing. NDT E Int. 62, 50–54 (2014)CrossRef
19.
Zurück zum Zitat Mandayam, S., Udpa, L., Upda, S.S., Lord, W.: Invariance transformations for magnetic flux leakage signals. IEEE Trans. Magn. 32(3), 1577–1580 (1996)CrossRef Mandayam, S., Udpa, L., Upda, S.S., Lord, W.: Invariance transformations for magnetic flux leakage signals. IEEE Trans. Magn. 32(3), 1577–1580 (1996)CrossRef
20.
Zurück zum Zitat Kopp, G., Willems, H.: Sizing limits of metal loss anomalies using tri-axial MFL measurements: a model study. NDT E Int. 55, 75–81 (2013)CrossRef Kopp, G., Willems, H.: Sizing limits of metal loss anomalies using tri-axial MFL measurements: a model study. NDT E Int. 55, 75–81 (2013)CrossRef
21.
Zurück zum Zitat Altschuler, E., Pignotti, A.: Nonlinear model of flaw detection in steel pipes by magnetic flux leakage. NDT E Int. 28(1), 35–40 (1995)CrossRef Altschuler, E., Pignotti, A.: Nonlinear model of flaw detection in steel pipes by magnetic flux leakage. NDT E Int. 28(1), 35–40 (1995)CrossRef
22.
Zurück zum Zitat Goktepe, M.: Non-destructive crack detection by capturing local flux leakage field. Sens. Actuators A 91(1), 70–72 (2001)CrossRef Goktepe, M.: Non-destructive crack detection by capturing local flux leakage field. Sens. Actuators A 91(1), 70–72 (2001)CrossRef
23.
Zurück zum Zitat Zhang, Y., Ye, Z.F., Wang, C.: A fast method for rectangular crack sizes reconstruction in magnetic flux leakage testing. NDT E Int. 42, 369–375 (2009)CrossRef Zhang, Y., Ye, Z.F., Wang, C.: A fast method for rectangular crack sizes reconstruction in magnetic flux leakage testing. NDT E Int. 42, 369–375 (2009)CrossRef
24.
Zurück zum Zitat Saha, S., Mukhopadhyay, S., Mahapatra, U., Bhattacharya, S., Srivastava, G.P.: Empirical structure for characterizing metal loss defects from radial magnetic flux leakage signal. NDT E Int. 43, 507–512 (2010)CrossRef Saha, S., Mukhopadhyay, S., Mahapatra, U., Bhattacharya, S., Srivastava, G.P.: Empirical structure for characterizing metal loss defects from radial magnetic flux leakage signal. NDT E Int. 43, 507–512 (2010)CrossRef
25.
Zurück zum Zitat Le, M., Lee, J., Jun, J., Kim, J.: Estimation of sizes of cracks on pipes in nuclear power plants using dipole moment and finite element methods. NDT E Int. 58, 56–63 (2013)CrossRef Le, M., Lee, J., Jun, J., Kim, J.: Estimation of sizes of cracks on pipes in nuclear power plants using dipole moment and finite element methods. NDT E Int. 58, 56–63 (2013)CrossRef
26.
Zurück zum Zitat Uetake, I., Saito, T.: Magnetic flux leakage by adjacent parallel surface slots. NDT E Int. 30(6), 371–376 (1997)CrossRef Uetake, I., Saito, T.: Magnetic flux leakage by adjacent parallel surface slots. NDT E Int. 30(6), 371–376 (1997)CrossRef
27.
Zurück zum Zitat Minkov, D., Shoji, T.: Method for sizing of 3-D surface breaking flaws by leakage flux. NDT E Int. 31(5), 317–324 (1998)CrossRef Minkov, D., Shoji, T.: Method for sizing of 3-D surface breaking flaws by leakage flux. NDT E Int. 31(5), 317–324 (1998)CrossRef
28.
Zurück zum Zitat Coughlin, C.R., Clapham, L., Atherton, D.L.: Effects of stress on MFL responses from elongated corrosion pits in pipeline steel. NDT E Int. 33, 181–188 (2000)CrossRef Coughlin, C.R., Clapham, L., Atherton, D.L.: Effects of stress on MFL responses from elongated corrosion pits in pipeline steel. NDT E Int. 33, 181–188 (2000)CrossRef
29.
Zurück zum Zitat Amineh, R.K., Koziel, S., Nikolova, N.K., Bandler, J.W., Reilly, J.P.: A space mapping methodology for defect characterization from magnetic flux leakage measurements. IEEE Trans. Magn. 44(8), 2058–2065 (2008)CrossRef Amineh, R.K., Koziel, S., Nikolova, N.K., Bandler, J.W., Reilly, J.P.: A space mapping methodology for defect characterization from magnetic flux leakage measurements. IEEE Trans. Magn. 44(8), 2058–2065 (2008)CrossRef
30.
Zurück zum Zitat Ravan, M., Amineh, R.K., Koziel, R.K., et al.: Sizing of 3-D arbitrary defects using magnetic flux leakage measurements. IEEE Trans. Magn. 46(4), 1024–1033 (2010)CrossRef Ravan, M., Amineh, R.K., Koziel, R.K., et al.: Sizing of 3-D arbitrary defects using magnetic flux leakage measurements. IEEE Trans. Magn. 46(4), 1024–1033 (2010)CrossRef
31.
Zurück zum Zitat Mukherjee, D., Saha, S., Mukhopadphay, S.: Inverse mapping of magnetic flux leakage signal for defect characterization. NDT E Int. 54, 198–208 (2013)CrossRef Mukherjee, D., Saha, S., Mukhopadphay, S.: Inverse mapping of magnetic flux leakage signal for defect characterization. NDT E Int. 54, 198–208 (2013)CrossRef
32.
Zurück zum Zitat Chen, Z., Preda, G., Mihalache, O., Miya, K.: Reconstruction of crack shapes from the MFLT signals by using a rapid forward solver and an optimization approach. IEEE Trans. Magn. 38(2), 1025–1028 (2002)CrossRef Chen, Z., Preda, G., Mihalache, O., Miya, K.: Reconstruction of crack shapes from the MFLT signals by using a rapid forward solver and an optimization approach. IEEE Trans. Magn. 38(2), 1025–1028 (2002)CrossRef
33.
Zurück zum Zitat Jomdecha, C., Prateepsen, A.: Design of modified electromagnetic main-flux for steel wire pipe inspection. NDT E Int. 42, 77–83 (2009)CrossRef Jomdecha, C., Prateepsen, A.: Design of modified electromagnetic main-flux for steel wire pipe inspection. NDT E Int. 42, 77–83 (2009)CrossRef
34.
Zurück zum Zitat Gloria, N.B.S., Areiza, M.C.L., Miranda, I.V.J., Rebello, J.M.A.: Development of a magnetic sensor for detection and sizing of internal pipeline corrosion defects. NDT E Int. 42, 669–677 (2009)CrossRef Gloria, N.B.S., Areiza, M.C.L., Miranda, I.V.J., Rebello, J.M.A.: Development of a magnetic sensor for detection and sizing of internal pipeline corrosion defects. NDT E Int. 42, 669–677 (2009)CrossRef
35.
Zurück zum Zitat Zhang, Y., Ye, Z.F., Xu, X.: An adaptive method for channel equalization in MFL inspection. NDT E Int. 40, 127–139 (2007)CrossRef Zhang, Y., Ye, Z.F., Xu, X.: An adaptive method for channel equalization in MFL inspection. NDT E Int. 40, 127–139 (2007)CrossRef
36.
Zurück zum Zitat Joshi, A., Udpa, L., Udpa, S., Tamburrino, A.: Adaptive wavelets for characterizing magnetic flux leakage signals from pipeline inspection. IEEE Trans. Magn. 42(10), 3168–3170 (2006)CrossRef Joshi, A., Udpa, L., Udpa, S., Tamburrino, A.: Adaptive wavelets for characterizing magnetic flux leakage signals from pipeline inspection. IEEE Trans. Magn. 42(10), 3168–3170 (2006)CrossRef
37.
Zurück zum Zitat ASTM E570-09: Standard Practice for Flux Leakage Examination of Ferromagnetic Steel Tubular Products, June 2009 ASTM E570-09: Standard Practice for Flux Leakage Examination of Ferromagnetic Steel Tubular Products, June 2009
38.
Zurück zum Zitat BS EN 10246-4: Non-destructive Testing of Steel Tubes—Part 4: Automatic Full Peripheral Magnetic Transducer/Flux Leakage Testing of Seamless Ferromagnetic Steel Tubes for the Detection of Transverse Imperfections, May 2007 BS EN 10246-4: Non-destructive Testing of Steel Tubes—Part 4: Automatic Full Peripheral Magnetic Transducer/Flux Leakage Testing of Seamless Ferromagnetic Steel Tubes for the Detection of Transverse Imperfections, May 2007
39.
Zurück zum Zitat Sun, Y.H., Kang, Y.H.: Magnetic compression effect in present MFL testing sensor. Sens. Actuators A. 160, 54–59 (2010)CrossRef Sun, Y.H., Kang, Y.H.: Magnetic compression effect in present MFL testing sensor. Sens. Actuators A. 160, 54–59 (2010)CrossRef
40.
Zurück zum Zitat Sun, Y.H., Kang, Y.H.: A new MFL principle and method based on near-zero background magnetic field. NDT E Int. 43, 348–353 (2010) Sun, Y.H., Kang, Y.H.: A new MFL principle and method based on near-zero background magnetic field. NDT E Int. 43, 348–353 (2010)
41.
Zurück zum Zitat Stratton, J.A.: Electromagnetic Theory, IEEE Antennas and Propagation Society Press. Wiley, Hoboken (2007) Stratton, J.A.: Electromagnetic Theory, IEEE Antennas and Propagation Society Press. Wiley, Hoboken (2007)
Metadaten
Titel
A Methodology for Identifying Defects in the Magnetic Flux Leakage Method and Suggestions for Standard Specimens
verfasst von
Yanhua Sun
Bo Feng
Shiwei Liu
Zhijian Ye
Shaobo Chen
Yihua Kang
Publikationsdatum
01.09.2015
Verlag
Springer US
Erschienen in
Journal of Nondestructive Evaluation / Ausgabe 3/2015
Print ISSN: 0195-9298
Elektronische ISSN: 1573-4862
DOI
https://doi.org/10.1007/s10921-015-0293-9

Weitere Artikel der Ausgabe 3/2015

Journal of Nondestructive Evaluation 3/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.