Skip to main content

2019 | OriginalPaper | Buchkapitel

3. A Model of the Defrost Process

verfasst von : Yang Liu, Francis A. Kulacki

Erschienen in: The Effect of Surface Wettability on the Defrost Process

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A model of frost melting is developed from fundamental analysis of the heat and mass transfer. The melting model envisions three stages as the frosted surface is heated: absorption of the melt water by diffusion, accumulation of the melt water, and draining of the melt water along the surface. The three stages of melting are connected physically, but the analysis of each involves a particular set of assumptions and use of a wide range parameters and physical laws. Surface wettability enters the analysis as a factor in the draining stage. The possibility of frost slumping is expressed through a criterion based on a static force balance in which contact angel is an implicit factor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Water saturation is the volume fraction of water in the pore volume.
 
2
The contact angles formed by expanding and contracting the liquids are referred to as the advancing contact angle and the receding contact angle respectively.
 
Literatur
74.
Zurück zum Zitat Aoki K, Hattori M, Ujiie T (1988) Snow melting by heating from the bottom surface. JSME Int J 31(2):269–275 Aoki K, Hattori M, Ujiie T (1988) Snow melting by heating from the bottom surface. JSME Int J 31(2):269–275
75.
Zurück zum Zitat Colbeck SC, Davidson G (1972) Water percolation through homogeneous snow. IASH Publication 107:242–257 Colbeck SC, Davidson G (1972) Water percolation through homogeneous snow. IASH Publication 107:242–257
76.
Zurück zum Zitat Colbeck SC (1974) The capillary effects on water percolation in homogeneous snow. J Glaciol 13(67):85–97CrossRef Colbeck SC (1974) The capillary effects on water percolation in homogeneous snow. J Glaciol 13(67):85–97CrossRef
77.
Zurück zum Zitat Colbeck SC (1976) An analysis of water flow in dry snow. Water Resour Res 12(3):523–527CrossRef Colbeck SC (1976) An analysis of water flow in dry snow. Water Resour Res 12(3):523–527CrossRef
78.
Zurück zum Zitat Colbeck SC (1982) The permeability of a melting snow cover. Water Resour Res 18(4):904–908CrossRef Colbeck SC (1982) The permeability of a melting snow cover. Water Resour Res 18(4):904–908CrossRef
79.
Zurück zum Zitat Bengtsson L (1982) Percolation of meltwater through a snowpack. Cold Reg Sci Technol 6:73–81CrossRef Bengtsson L (1982) Percolation of meltwater through a snowpack. Cold Reg Sci Technol 6:73–81CrossRef
80.
Zurück zum Zitat Whitaker S (1986) Flow in porous media I: a theoretical derivation of Darcy’s law. Transport Porous Med 1:3–25CrossRef Whitaker S (1986) Flow in porous media I: a theoretical derivation of Darcy’s law. Transport Porous Med 1:3–25CrossRef
81.
Zurück zum Zitat Shaun Sellers S (2000) Theory of water transport in melting snow with moving surface. Cold Reg Sci Technol 31:47–57CrossRef Shaun Sellers S (2000) Theory of water transport in melting snow with moving surface. Cold Reg Sci Technol 31:47–57CrossRef
82.
Zurück zum Zitat Manthey S, Hassanizadeh SM, Helmig R, Hilfer R (2008) Dimensional analysis of two-phase flow including a rate-dependent capillary pressure-saturation relationship. Adv Water Resour 31:1137–1150CrossRef Manthey S, Hassanizadeh SM, Helmig R, Hilfer R (2008) Dimensional analysis of two-phase flow including a rate-dependent capillary pressure-saturation relationship. Adv Water Resour 31:1137–1150CrossRef
83.
Zurück zum Zitat Daanen RP, Nieber JL (2009) Model for coupled liquid water flow and heat transport with phase change in a snowpack. J Cold Reg Eng 23(2):43–68CrossRef Daanen RP, Nieber JL (2009) Model for coupled liquid water flow and heat transport with phase change in a snowpack. J Cold Reg Eng 23(2):43–68CrossRef
84.
Zurück zum Zitat Hirashima H, Yamaguchi S, Sato A, Lehning M (2010) Numerical modeling of liquid water movement through layered snow based on new measurements of the water retention curve. Cold Reg Sci Technol 64:94–103CrossRef Hirashima H, Yamaguchi S, Sato A, Lehning M (2010) Numerical modeling of liquid water movement through layered snow based on new measurements of the water retention curve. Cold Reg Sci Technol 64:94–103CrossRef
85.
Zurück zum Zitat Yamaguchi S, Katsushima T, Sato A, Kumakura T (2010) Water retention curve of snow with different grain sizes. Cold Reg Sci Technol 64:87–93CrossRef Yamaguchi S, Katsushima T, Sato A, Kumakura T (2010) Water retention curve of snow with different grain sizes. Cold Reg Sci Technol 64:87–93CrossRef
86.
Zurück zum Zitat Szymkiewicz A (2013) Modeling water flow in unsaturated porous media. Springer-Verlag, Berlin, HeidelbergCrossRef Szymkiewicz A (2013) Modeling water flow in unsaturated porous media. Springer-Verlag, Berlin, HeidelbergCrossRef
87.
Zurück zum Zitat Katsushima T, Satoru Yamaguchi S, Kumakura T, Atsushi Sato A (2013) Experimental analysis of preferential flow in dry snowpack. Cold Reg Sci Technol 85:206–216CrossRef Katsushima T, Satoru Yamaguchi S, Kumakura T, Atsushi Sato A (2013) Experimental analysis of preferential flow in dry snowpack. Cold Reg Sci Technol 85:206–216CrossRef
88.
Zurück zum Zitat Washburn EW (1921) The dynamics of capillary flow. Phys Rev 18(3):273–283CrossRef Washburn EW (1921) The dynamics of capillary flow. Phys Rev 18(3):273–283CrossRef
89.
Zurück zum Zitat Tsypkin GG (2010) Effect of the capillary forces on the moisture saturation distribution during the thawing of a frozen soil. Fluid Dyn 45(6):942–951MathSciNetCrossRef Tsypkin GG (2010) Effect of the capillary forces on the moisture saturation distribution during the thawing of a frozen soil. Fluid Dyn 45(6):942–951MathSciNetCrossRef
90.
Zurück zum Zitat Beavers GS, Joseph DD (1967) Boundary conditions at a naturally permeable wall. J Fluid Mech 30(1):197–207CrossRef Beavers GS, Joseph DD (1967) Boundary conditions at a naturally permeable wall. J Fluid Mech 30(1):197–207CrossRef
91.
Zurück zum Zitat Taylor GI (1971) A model for the boundary condition of a porous material. Part 1. J Fluid Mech 49(2):319–326CrossRef Taylor GI (1971) A model for the boundary condition of a porous material. Part 1. J Fluid Mech 49(2):319–326CrossRef
92.
Zurück zum Zitat Richardson S (1971) A model for the boundary condition of a porous material. Part 2. J Fluid Mech 49(2):327–336CrossRef Richardson S (1971) A model for the boundary condition of a porous material. Part 2. J Fluid Mech 49(2):327–336CrossRef
93.
Zurück zum Zitat Sahraoui M, Kaviany M (1992) Slip and no-slip velocity boundary conditions at interface of porous, plain media. Int J Heat Mass Transfer 35(4):927–943CrossRef Sahraoui M, Kaviany M (1992) Slip and no-slip velocity boundary conditions at interface of porous, plain media. Int J Heat Mass Transfer 35(4):927–943CrossRef
94.
Zurück zum Zitat Vinogradova OI (1995) Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir 11(6):2213–2220CrossRef Vinogradova OI (1995) Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir 11(6):2213–2220CrossRef
95.
Zurück zum Zitat Barrat JL (1999) Large slip effect at a nonwetting fluid-solid interface. Phys Rev Lett 82(23):4671–4674CrossRef Barrat JL (1999) Large slip effect at a nonwetting fluid-solid interface. Phys Rev Lett 82(23):4671–4674CrossRef
96.
Zurück zum Zitat Baidry J, Charlaix E (2001) Experimental evidence for a large slip effect at a nonwetting fluid-solid interface. Langmuir 17(17):5232–5236CrossRef Baidry J, Charlaix E (2001) Experimental evidence for a large slip effect at a nonwetting fluid-solid interface. Langmuir 17(17):5232–5236CrossRef
97.
Zurück zum Zitat de Gennes PG (2002) On fluid/wall slippage. Langmuir 18(9):3413–3414CrossRef de Gennes PG (2002) On fluid/wall slippage. Langmuir 18(9):3413–3414CrossRef
98.
Zurück zum Zitat Andrienko D, Dünweg B (2003) Boundary slip as a result of a prewetting transition. J Chem Phys 119(24):13106–13112CrossRef Andrienko D, Dünweg B (2003) Boundary slip as a result of a prewetting transition. J Chem Phys 119(24):13106–13112CrossRef
99.
Zurück zum Zitat Lauga E, Brenner MP, Stone HA (2005) Chapter 15: Microfluidics: the no-slip boundary condition. In: Foss J, Tropes C, Yarin A (eds) Handbook of experimental fluid dynamics. Springer, New York Lauga E, Brenner MP, Stone HA (2005) Chapter 15: Microfluidics: the no-slip boundary condition. In: Foss J, Tropes C, Yarin A (eds) Handbook of experimental fluid dynamics. Springer, New York
100.
Zurück zum Zitat Choi C-H, Kim C-J (2006) Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys Rev Lett 96:066001CrossRef Choi C-H, Kim C-J (2006) Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys Rev Lett 96:066001CrossRef
Metadaten
Titel
A Model of the Defrost Process
verfasst von
Yang Liu
Francis A. Kulacki
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-02616-5_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.