Skip to main content
Erschienen in: Cognitive Computation 5/2015

01.10.2015

A Neural Network Model of Episode Representations in Working Memory

verfasst von: Martin Takac, Alistair Knott

Erschienen in: Cognitive Computation | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a neural network model of the storage of episode representations in working memory (WM). Our key idea is that episodes are encoded in WM as prepared sensorimotor routines, i.e. as prepared sequences of attentional and motor operations. Our network reproduces several experimental findings about the representation of prepared sequences in prefrontal cortex. Interpreted as a model of WM episode representations, it has useful applications in an account of long-term memory for episodes and in accounts of sentence processing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Manuscript in preparation, Knott and Takac: Locomotion actions as sequentially structured sensorimotor routines.
 
2
In fact, even when the network is used for perception of episodes, the selection mechanism has an impact on the agent’s behaviour. The expected episode is a sequence whose first two items are planned attentional actions: during perception, these actions will actually be executed by the agent, with results that depend on the world as well as on the agent’s expectations and which might well result in revisions to the selected episode. The model thus allows for active perceptual operations during the process of selecting an episode, creating the structural coupling between its representational system and the environment that is characteristic of embodied systems (see, for example, [32]).
 
3
The most obvious kind of ‘attentional actions’ are overt movements, such as saccades. But attentional actions also involve cognitive operations, in particular top−down activation of semantic representations. These top−down activation operations can encode either the expected result of a forthcoming object classification process [34] or the category of properties of a desired search target [35, 36]. Our attentional actions represent objects in the sense that they represent expected or sought-for object categories.
 
4
Since WM representations are normally understood to be ‘maintained in the face of incoming perceptual stimuli’, we have to assume a special operation to remove the current episode representation from the dynamic episodic buffer before the next episode begins—an operation that probably involves an element of self-inhibition (see, for example, Mayr and Keele [39]). In previous work [19], we have considered the nature of this operation, but in the present study, we just use the end-of-episode signal to stand in for this operation.
 
5
If the predicted episode ranked among multiple episodes predicted by the VLMM with equal frequency, e.g. occupying 2nd–4th position, its rank would be the upper bound, i.e. 2.
 
6
Candidates were determined by top−down reconstruction, i.e. replayed as a temporal sequence in the aggregate SM signal layer.
 
7
The distributed model performed better by 3.7 % in total grammaticality, 0.2 % in compatibility, 0.8 % in matches, 0.09 in rank, and 5.1 % in rank base [37].
 
Literatur
1.
Zurück zum Zitat Baddeley A, Hitch G. Working memory. In: Bower G, editor. The psychology of learning and motivation: advances in research and theory (Vol. 8). New York: Academic Press; 1974. p. 47–90. Baddeley A, Hitch G. Working memory. In: Bower G, editor. The psychology of learning and motivation: advances in research and theory (Vol. 8). New York: Academic Press; 1974. p. 47–90.
2.
Zurück zum Zitat Baddeley A. The episodic buffer: a new component of working memory? TICS. 2000;4(11):417–23. Baddeley A. The episodic buffer: a new component of working memory? TICS. 2000;4(11):417–23.
3.
Zurück zum Zitat Tulving E, Markowitsch H. Episodic and declarative memory: role of the hippocampus. Hippocampus. 1998;8:198–204.CrossRefPubMed Tulving E, Markowitsch H. Episodic and declarative memory: role of the hippocampus. Hippocampus. 1998;8:198–204.CrossRefPubMed
4.
Zurück zum Zitat Abraham W, Logan B, Greenwood J, Dragunow M. Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J Neurosci. 2002;22:9626–34.PubMed Abraham W, Logan B, Greenwood J, Dragunow M. Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J Neurosci. 2002;22:9626–34.PubMed
5.
Zurück zum Zitat Levelt W. Speaking: from intention to articulation. Cambridge: MIT Press; 1989. Levelt W. Speaking: from intention to articulation. Cambridge: MIT Press; 1989.
6.
Zurück zum Zitat Haarmann H, Cameron K, Ruchkin D. Short-term semantic retention during on-line sentence comprehension. Brain potential evidence from filler-gap constructions. Cognit Brain Res. 2003;15:178–90.CrossRef Haarmann H, Cameron K, Ruchkin D. Short-term semantic retention during on-line sentence comprehension. Brain potential evidence from filler-gap constructions. Cognit Brain Res. 2003;15:178–90.CrossRef
7.
Zurück zum Zitat Mayberry M, Miikkulainen R. Incremental nonmonotonic sentence interpretation through semantic self-organization. The University of Texas at Austin: Department of Computer Sciences; 2008; AI08–12. Mayberry M, Miikkulainen R. Incremental nonmonotonic sentence interpretation through semantic self-organization. The University of Texas at Austin: Department of Computer Sciences; 2008; AI08–12.
8.
Zurück zum Zitat Ballard D, Hayhoe M, Pook P, Rao R. Deictic codes for the embodiment of cognition. Behav Brain Sci. 1997;20(4):723–67.PubMed Ballard D, Hayhoe M, Pook P, Rao R. Deictic codes for the embodiment of cognition. Behav Brain Sci. 1997;20(4):723–67.PubMed
9.
Zurück zum Zitat Knott A. Sensorimotor cognition and natural language syntax. Cambridge: MIT Press; 2012. Knott A. Sensorimotor cognition and natural language syntax. Cambridge: MIT Press; 2012.
10.
Zurück zum Zitat Knott A. Syntactic structures as descriptions of sensorimotor processes. Biolinguistics. 2014;8:1–52. Knott A. Syntactic structures as descriptions of sensorimotor processes. Biolinguistics. 2014;8:1–52.
11.
Zurück zum Zitat Wallenstein G, Eichenbaum H, Hasselmo M. The hippocampus as an associator of discontiguous events. Trends Neurosci. 1998;21:317–23.CrossRefPubMed Wallenstein G, Eichenbaum H, Hasselmo M. The hippocampus as an associator of discontiguous events. Trends Neurosci. 1998;21:317–23.CrossRefPubMed
12.
Zurück zum Zitat Lee A, Wilson M. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron. 2002;36:1183–94.CrossRefPubMed Lee A, Wilson M. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron. 2002;36:1183–94.CrossRefPubMed
13.
Zurück zum Zitat Cutsuridis V, Hasselmo M. Spatial memory sequence encoding and replay during modeled theta and ripple oscillations. Cognit Comput. 2011;3:554–74.CrossRef Cutsuridis V, Hasselmo M. Spatial memory sequence encoding and replay during modeled theta and ripple oscillations. Cognit Comput. 2011;3:554–74.CrossRef
14.
Zurück zum Zitat Haggard P. Human volition: towards a neuroscience of will. Nat Rev Neurosci. 2008;9:934–46.CrossRefPubMed Haggard P. Human volition: towards a neuroscience of will. Nat Rev Neurosci. 2008;9:934–46.CrossRefPubMed
15.
Zurück zum Zitat Tessitore G, Prevete R, Catanzariti E, Tamburrini G. From motor to sensory processing in mirror neuron computational modelling. Biol Cybern. 2010;103:471–85.CrossRefPubMed Tessitore G, Prevete R, Catanzariti E, Tamburrini G. From motor to sensory processing in mirror neuron computational modelling. Biol Cybern. 2010;103:471–85.CrossRefPubMed
16.
Zurück zum Zitat Chambon V, Wenke D, Fleming S, Prinz W, Haggard P. An online neural substrate for sense of agency. Cereb Cortex. 2012;23:1031–7.CrossRefPubMed Chambon V, Wenke D, Fleming S, Prinz W, Haggard P. An online neural substrate for sense of agency. Cereb Cortex. 2012;23:1031–7.CrossRefPubMed
17.
Zurück zum Zitat Tipper S, Lortie C, Baylis G. Selective reaching: evidence for action-centered attention. J Exp Psychol Hum Percept Perform. 1992;18:891–905.CrossRefPubMed Tipper S, Lortie C, Baylis G. Selective reaching: evidence for action-centered attention. J Exp Psychol Hum Percept Perform. 1992;18:891–905.CrossRefPubMed
18.
Zurück zum Zitat Johansson R, Westling G, Backstrom A, Flanagan J. Eye-hand coordination in object manipulation. J Neurosci. 2001;21(17):6917–32.PubMed Johansson R, Westling G, Backstrom A, Flanagan J. Eye-hand coordination in object manipulation. J Neurosci. 2001;21(17):6917–32.PubMed
19.
Zurück zum Zitat Caza G, Knott A. Pragmatic bootstrapping: a neural network model of vocabulary acquisition. Lang Learn Dev. 2012;8:1–23.CrossRef Caza G, Knott A. Pragmatic bootstrapping: a neural network model of vocabulary acquisition. Lang Learn Dev. 2012;8:1–23.CrossRef
20.
Zurück zum Zitat Knott A. How infants learn word meanings and propositional attitudes: a neural network model. In: Hung TW, editor. Lang action. Berlin: Springer; 2014. p. 107–24. Knott A. How infants learn word meanings and propositional attitudes: a neural network model. In: Hung TW, editor. Lang action. Berlin: Springer; 2014. p. 107–24.
21.
Zurück zum Zitat Lee-Hand J, Knott A. A model of causative actions: from motor learning to syntactic structure. In: Proceedings of the 35th annual meeting of the cognitive science society. Berlin; 2013; p. 2849–2854. Lee-Hand J, Knott A. A model of causative actions: from motor learning to syntactic structure. In: Proceedings of the 35th annual meeting of the cognitive science society. Berlin; 2013; p. 2849–2854.
22.
Zurück zum Zitat Curtis C, D’Esposito M. Persistent activity in the prefrontal cortex during working memory. Trends Cognit Sci. 2003;7(9):415–23.CrossRef Curtis C, D’Esposito M. Persistent activity in the prefrontal cortex during working memory. Trends Cognit Sci. 2003;7(9):415–23.CrossRef
23.
24.
Zurück zum Zitat Glenberg A, Gallese V. Action-based language: a theory of language acquisition, comprehension, and production. Cortex. 2012;48:905–22.CrossRefPubMed Glenberg A, Gallese V. Action-based language: a theory of language acquisition, comprehension, and production. Cortex. 2012;48:905–22.CrossRefPubMed
25.
Zurück zum Zitat Tulving E. Elements of episodic memory. New York: Oxford University Press; 1983. Tulving E. Elements of episodic memory. New York: Oxford University Press; 1983.
26.
Zurück zum Zitat Barone P, Joseph JP. Prefrontal cortex and spatial sequencing in macaque monkey. Exp Brain Res. 1989;78:447–64.CrossRefPubMed Barone P, Joseph JP. Prefrontal cortex and spatial sequencing in macaque monkey. Exp Brain Res. 1989;78:447–64.CrossRefPubMed
27.
28.
Zurück zum Zitat Rhodes B, Bullock D, Verwey W, Averbeck B, Page M. Learning and production of movement sequences: behavioral, neurophysiological, and modeling perspectives. Hum Mov Sci. 2004;23:699–746.CrossRefPubMed Rhodes B, Bullock D, Verwey W, Averbeck B, Page M. Learning and production of movement sequences: behavioral, neurophysiological, and modeling perspectives. Hum Mov Sci. 2004;23:699–746.CrossRefPubMed
29.
Zurück zum Zitat Averbeck B, Sohn J, Lee D. Activity in prefrontal cortex during dynamic selection of action sequences. Nat Neurosci. 2006;9(2):276–82.CrossRefPubMed Averbeck B, Sohn J, Lee D. Activity in prefrontal cortex during dynamic selection of action sequences. Nat Neurosci. 2006;9(2):276–82.CrossRefPubMed
30.
Zurück zum Zitat Shallice T, Burgess P. Deficits in strategy application following frontal lobe damage in man. Brain. 1991;114:727–41.CrossRefPubMed Shallice T, Burgess P. Deficits in strategy application following frontal lobe damage in man. Brain. 1991;114:727–41.CrossRefPubMed
31.
Zurück zum Zitat Kaller C, Heinze K, Frenkel A, Läppchen C, Unterrainer J, Weiller C, et al. Differential impact of continuous theta-burst stimulation over left and right DLPFC on planning. Hum Brain Mapp. 2013;34:36–51.CrossRefPubMed Kaller C, Heinze K, Frenkel A, Läppchen C, Unterrainer J, Weiller C, et al. Differential impact of continuous theta-burst stimulation over left and right DLPFC on planning. Hum Brain Mapp. 2013;34:36–51.CrossRefPubMed
32.
Zurück zum Zitat Ziemke T. What’s that thing called embodiment? In: Alterman R, Kirsh D, editors. Proceedings of the 25th Annual Conference of the Cognitive Science Society. Mahwah, NJ: Lawrence Erlbaum; 2003. p. 1134–9. Ziemke T. What’s that thing called embodiment? In: Alterman R, Kirsh D, editors. Proceedings of the 25th Annual Conference of the Cognitive Science Society. Mahwah, NJ: Lawrence Erlbaum; 2003. p. 1134–9.
33.
Zurück zum Zitat Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern. 1982;43:59–69.CrossRef Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern. 1982;43:59–69.CrossRef
34.
Zurück zum Zitat Kahneman D, Treisman A, Gibbs B. The reviewing of object files: object-specific integration of information. Cognit Psychol. 1992;24:175–219.CrossRefPubMed Kahneman D, Treisman A, Gibbs B. The reviewing of object files: object-specific integration of information. Cognit Psychol. 1992;24:175–219.CrossRefPubMed
35.
Zurück zum Zitat Hasegawa R, Matsumoto M, Mikami A. Search target selection in monkey prefrontal cortex. J Neurophysiol. 2000;84:1692–6.PubMed Hasegawa R, Matsumoto M, Mikami A. Search target selection in monkey prefrontal cortex. J Neurophysiol. 2000;84:1692–6.PubMed
36.
Zurück zum Zitat Fix J, Rougier N, Alexandre F. A dynamic neural field approach to the covert and overt deployment of spatial attention. Cognit Comput. 2011;3:279–93.CrossRef Fix J, Rougier N, Alexandre F. A dynamic neural field approach to the covert and overt deployment of spatial attention. Cognit Comput. 2011;3:279–93.CrossRef
37.
Zurück zum Zitat Takac M, Knott A. A revised neural network model of episode representations in working memory. Dept of Computer Science, University of Otago; 2014; OUCS-2014-03. Takac M, Knott A. A revised neural network model of episode representations in working memory. Dept of Computer Science, University of Otago; 2014; OUCS-2014-03.
38.
Zurück zum Zitat Strickert M, Hammer B. Merge SOM for temporal data. Neurocomputing. 2005;64:39–71.CrossRef Strickert M, Hammer B. Merge SOM for temporal data. Neurocomputing. 2005;64:39–71.CrossRef
39.
Zurück zum Zitat Mayr U, Keele S. Changing internal constraints on action: the role of backward inhibition. J Exp Psychol Gen. 2000;129(1):4–26.CrossRefPubMed Mayr U, Keele S. Changing internal constraints on action: the role of backward inhibition. J Exp Psychol Gen. 2000;129(1):4–26.CrossRefPubMed
40.
Zurück zum Zitat Vickers D, Lee MD. Dynamic models of simple judgments: II. Properties of a self-organizing PAGAN (parallel, adaptive, generalized accumulator network) model for multi-choice tasks. Nonlinear Dyn Psychol Life Scie. 2000;4(1):1–31.CrossRef Vickers D, Lee MD. Dynamic models of simple judgments: II. Properties of a self-organizing PAGAN (parallel, adaptive, generalized accumulator network) model for multi-choice tasks. Nonlinear Dyn Psychol Life Scie. 2000;4(1):1–31.CrossRef
41.
Zurück zum Zitat James DL, Miikkulainen R. SARDNET: a self-organizing feature map for sequences. In: Tesauro G, Touretzky DS, Leen TK, editors. Advances in neural information processing systems 7. Cambridge: MIT Press; 1995. p. 577–84. James DL, Miikkulainen R. SARDNET: a self-organizing feature map for sequences. In: Tesauro G, Touretzky DS, Leen TK, editors. Advances in neural information processing systems 7. Cambridge: MIT Press; 1995. p. 577–84.
42.
Zurück zum Zitat Miikkulainen R. Subsymbolic case-role analysis of sentences with embedded clauses. Cognit Sci. 1996;20:47–73.CrossRef Miikkulainen R. Subsymbolic case-role analysis of sentences with embedded clauses. Cognit Sci. 1996;20:47–73.CrossRef
43.
Zurück zum Zitat Chang F. Symbolically speaking: a connectionist model of sentence production. Cognit Sci. 2002;26:609–51.CrossRef Chang F. Symbolically speaking: a connectionist model of sentence production. Cognit Sci. 2002;26:609–51.CrossRef
44.
Zurück zum Zitat Rohde D. A connectionist model of sentence comprehension and production. School of Computer Science. Carnegie Mellon University; 2002. Rohde D. A connectionist model of sentence comprehension and production. School of Computer Science. Carnegie Mellon University; 2002.
45.
Zurück zum Zitat Takac M, Benuskova L, Knott A. Mapping sensorimotor sequences to word sequences: a connectionist model of language acquisition and sentence generation. Cognition. 2012;125:288–308.CrossRefPubMed Takac M, Benuskova L, Knott A. Mapping sensorimotor sequences to word sequences: a connectionist model of language acquisition and sentence generation. Cognition. 2012;125:288–308.CrossRefPubMed
46.
Zurück zum Zitat Collins M. A new statistical parser based on bigram lexical dependencies. In: Proceedings of the 34th meeting of the ACL. Santa Cruz; 1996; p. 184–191. Collins M. A new statistical parser based on bigram lexical dependencies. In: Proceedings of the 34th meeting of the ACL. Santa Cruz; 1996; p. 184–191.
47.
Zurück zum Zitat Dispaldro M, Leonard L, Corradi N, Ruffino M, Bronte T, Facoetti A. Visual attentional engagement deficits in children with specific language impairment and their role in real-time language processing. Cortex. 2013;49:2126–39.PubMedCentralCrossRefPubMed Dispaldro M, Leonard L, Corradi N, Ruffino M, Bronte T, Facoetti A. Visual attentional engagement deficits in children with specific language impairment and their role in real-time language processing. Cortex. 2013;49:2126–39.PubMedCentralCrossRefPubMed
48.
Zurück zum Zitat Balconi M. Dorsolateral prefrontal cortex, working memory and episodic memory processes: insight through transcranial magnetic stimulation techniques. Neurosci Bull. 2013;29(3):381–9.CrossRefPubMed Balconi M. Dorsolateral prefrontal cortex, working memory and episodic memory processes: insight through transcranial magnetic stimulation techniques. Neurosci Bull. 2013;29(3):381–9.CrossRefPubMed
49.
Zurück zum Zitat Burgess N, Hitch G. Memory for serial order: a network model of the phonological loop and its timing. Psychol Rev. 1999;106:551–81.CrossRef Burgess N, Hitch G. Memory for serial order: a network model of the phonological loop and its timing. Psychol Rev. 1999;106:551–81.CrossRef
50.
Zurück zum Zitat Burgess N, Hitch G. A revised model of short-term memory and long-term learning of verbal sequences. J Mem Lang. 2006;55(4):627–52.CrossRef Burgess N, Hitch G. A revised model of short-term memory and long-term learning of verbal sequences. J Mem Lang. 2006;55(4):627–52.CrossRef
51.
Zurück zum Zitat Brown GDA, Hulme C, Preece T. Oscillator-based memory for serial order. Psychol Rev. 2000;107:127–81.CrossRefPubMed Brown GDA, Hulme C, Preece T. Oscillator-based memory for serial order. Psychol Rev. 2000;107:127–81.CrossRefPubMed
52.
Zurück zum Zitat Howard M, Kahana M. A distributed representation of temporal context. J Math Psychol. 2002;46:269–99.CrossRef Howard M, Kahana M. A distributed representation of temporal context. J Math Psychol. 2002;46:269–99.CrossRef
53.
Zurück zum Zitat Page M, Norris D. A model linking immediate serial recall, the Hebb repetition effect and the learning of phonological word forms. Philos Trans R Soc B. 2009;364:3737–53.CrossRef Page M, Norris D. A model linking immediate serial recall, the Hebb repetition effect and the learning of phonological word forms. Philos Trans R Soc B. 2009;364:3737–53.CrossRef
54.
Zurück zum Zitat Botvinick MM, Plaut DC. Short-term memory for serial order: a recurrent neural network model. Psychol Rev. 2006;113(2):201–33.CrossRefPubMed Botvinick MM, Plaut DC. Short-term memory for serial order: a recurrent neural network model. Psychol Rev. 2006;113(2):201–33.CrossRefPubMed
55.
Zurück zum Zitat Dominey P, Arbib M, Joseph JP. A model of corticostriatal plasticity for learning associations and sequences. J Cognit Neurosci. 1995;7(3):311–36.CrossRef Dominey P, Arbib M, Joseph JP. A model of corticostriatal plasticity for learning associations and sequences. J Cognit Neurosci. 1995;7(3):311–36.CrossRef
56.
Zurück zum Zitat Dominey P, Hoen M, Inui T. A neurolinguistic model of grammatical construction processing. J Cognit Neurosci. 2006;18(12):2088–107.CrossRef Dominey P, Hoen M, Inui T. A neurolinguistic model of grammatical construction processing. J Cognit Neurosci. 2006;18(12):2088–107.CrossRef
57.
Zurück zum Zitat Shastri L. Episodic memory trace formation in the hippocampal system: a model of cortico-hippocampal interaction. Berkeley: International Computer Science Institute (ICSI), UC Berkeley; 2001; TR-01-004. Shastri L. Episodic memory trace formation in the hippocampal system: a model of cortico-hippocampal interaction. Berkeley: International Computer Science Institute (ICSI), UC Berkeley; 2001; TR-01-004.
58.
Zurück zum Zitat van der Velde F, de Kamps M. Neural blackboard architectures of combinatorial structures in cognition. Behav Brain Sci. 2006;29:37–108.PubMed van der Velde F, de Kamps M. Neural blackboard architectures of combinatorial structures in cognition. Behav Brain Sci. 2006;29:37–108.PubMed
59.
Zurück zum Zitat Stewart T, Eliasmith C. Compositionality and biologically plausible models. In: Werning M, Hinzen W, editors. The Oxford handbook of compositionality. New York: Oxford University Press; 2012. Stewart T, Eliasmith C. Compositionality and biologically plausible models. In: Werning M, Hinzen W, editors. The Oxford handbook of compositionality. New York: Oxford University Press; 2012.
60.
Zurück zum Zitat Dennis S. A memory-based theory of verbal cognition. Cognit Sci. 2005;29(2):145–93.CrossRef Dennis S. A memory-based theory of verbal cognition. Cognit Sci. 2005;29(2):145–93.CrossRef
61.
Zurück zum Zitat Reynolds J, Zacks J, Braver T. A computational model of event segmentation from perceptual prediction. Cognit Sci. 2007;31:613–43.CrossRef Reynolds J, Zacks J, Braver T. A computational model of event segmentation from perceptual prediction. Cognit Sci. 2007;31:613–43.CrossRef
Metadaten
Titel
A Neural Network Model of Episode Representations in Working Memory
verfasst von
Martin Takac
Alistair Knott
Publikationsdatum
01.10.2015
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 5/2015
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-015-9330-3

Weitere Artikel der Ausgabe 5/2015

Cognitive Computation 5/2015 Zur Ausgabe