Skip to main content
Erschienen in: Complex & Intelligent Systems 1/2021

Open Access 16.10.2020 | Original Article

A new goodness of fit test in the presence of uncertain parameters

verfasst von: Muhammad Aslam

Erschienen in: Complex & Intelligent Systems | Ausgabe 1/2021

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Weibull distribution has been widely used in the areas of quality and reliability. The Anderson–Darling test has been popularly used either the data in hand follow the Weibull distribution or not. The existing Anderson–Darling test under classical statistics is applied when all the observations in quality and reliability work are determined, précised, and exact. In the areas of reliability and quality, the data may indeterminate, in-interval and fuzzy. In this case, the existing Anderson–Darling test cannot be applied for testing the assumption of the Weibull distribution. In this paper, we present the Anderson–Darling test under neutrosophic statistics. We present the methodology to fit the neutrosophic Weibull distribution on the data. We discuss the testing procedure with the help of reliability data. We present the comparisons of the proposed test with the existing Anderson–Darling the goodness of fit test under classical statistics. From the comparison, it is concluded that the proposed test is more informative than the existing Anderson–Darling test under an indeterminate environment. In addition, the proposed test gives information about the measure of indeterminacy.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

The derivation of statistical methods is based on the assumption that a random variable or the data follow some specific distribution. According to Romeu [1] “when we assume that our data follow a specific distribution, we take a serious risk. If our assumption is wrong, then the results obtained may invalid”. For example, before testing a hypothesis, the suitable test statistic is chosen according to the nature of the data in hand. The tests based on normal distribution are chosen when the assumption of the normality is met; otherwise, the non-parametric tests are applied for testing the hypothesis. Two approaches have been widely used to checking the assumption of any distribution. An approach in which the assumption of the data is checked using the graphical properties is called the empirical procedure. Another approach which provides the more formal, a quantifiable, and reliable result is called the goodness of fit test. The goodness of fit tests is based on the cumulative distribution function (cdf) or the probability density function (pdf) of the underlying distribution. Arshad et al. [2] applied the Anderson–Darling test for testing the assumption of generalized Pareto distribution. Marsaglia and Marsaglia [3] and Razali and Wah [4] presented a study of the performance evaluation of this test. Jäntschi and Bolboacă [5] worked on the computational probabilities of Anderson–Darling test. Formenti et al. [6] applied the Anderson–Darling test in risk assessment. Islam [7] worked on the ranking of skewed distribution using this test. Jäntschi [8] and Jäntschi [9] worked on detecting outliers for continuous distributions. More information can be read et al., in Rahman [10], Anderson [11], Li et al. [12] and Wijekularathna et al. [13].
The statistical test and models have been widely used for the testing of energy generating devices. The choice of the better statistical model will lead to the best estimation and forecasting of the lifetime of energy produced items. Zhang and Lee [14] worked on the health monitoring of batteries. He et al. [15] and Nuhic et al. [16] used the Bayesian approach and data-driven approach for the batteries’ data, respectively. Hu et al. [17] worked on the capacity estimation of the batteries. Ng et al. [18] applied the Bayes model for the life prediction of the batteries. Barré et al. [19] presented a statistical study for batteries used in vehicles. Chiodo et al. [20] worked on an accelerated test using batteries’ data. Chiodo et al. [20] presented statistical analysis of lithium-ion battery recycling processes. Mathis et al. [21] presented statistical work on the consumption due to the energy heating system. Pramanik et al. [21] provided a review on energy equipment. For more applications of statistical models, the reader may refer to Shim et al. [22], Andre et al. [23], Xing et al. [24], and Harris et al. [25].
In the traditional tests under classical statistics, it is assumed that all observations are crisp in the population or the sample. But, the data obtained from the complex system may not be determined, exact, and certain. To test this type of data, the statistical tests based on the fuzzy approach are applied. Arnold [26] discussed the fuzzy test and power function of the test. Przemysław Grzegorzewski [27] and Jamkhaneh and Ghara [28] discussed the application of the statistical test for vague data. Montenegro et al. [29] presented a fuzzy-based test for two populations. Taheri and Behboodian [30] used the Bayesian approach to develop a test under fuzzy logic. Wu [31] presented a test for more than two populations using fuzzy logic. Przemyslaw et al. [32] and Noughabi and Akbari [33] presented the testing of hypothesis procedure for fuzzy logic. Momeni et al. [34] presented Kolomogorov-Smirnov for testing the normality of the fuzzy data. More applications of fuzzy-based tests can be seen in Van Cutsem and Gath [29, 35], Mohanty and AnnanNaidu [36], Moradnezhadi [37], Moewes et al. [38] and Choi et al. [39].
A generalization of fuzzy logic is called the neutrosophic logic was introduced by Smarandache [40]. The neutrosophic provides information about the measure of indeterminacy, the measure of truthiness, and measure of falseness. Smarandache and Khalid [41] proved the efficiency of the neutrosophic logic over the fuzzy logic and interval-based analysis. The applications of neutrosophic logic can be seen in Hanafy et al. [42], Broumi and Smarandache [43], Guo and Sengur [44], Guo and Sengur [45], Guo et al. [46], Patro and Smarandache [47], Broumi et al. [48], Peng and Dai [49], Abdel-Baset et al. [50], Abdel-Baset et al. [51], Abdel-Baset et al. [52], Nabeeh et al. [53], Pratihar et al. [54] and Pratihar et al. [55]. Smarandache [56] introduced the neutrosophic statistics as the extension of classical statistics. The neutrosophic statistics can be applied when the data have indeterminacy. Chen et al. [57] and Chen et al. [58] presented the idea of analyzing the neutrosophic numbers. Aslam [59] and Aslam [60] proposed a statistical test to test normality using the neutrosophic statistics. For more applications of neutrosophic statistics, the reader may refer to Aslam and Albassam [61] and Aslam [62].
Our literature search shows that there is no work on the Anderson–Darling test in the presence of indeterminacy. The existing Anderson–Darling test cannot be applied when the data are given in neutrosophic numbers. In this paper, we will present the Anderson–Darling test under neutrosophic statistics. We will present the methodology to fit the neutrosophic Weibull distribution on the batteries’ data. We will discuss the testing procedure with the help of batteries’ reliability data. From the comparison, it is concluded that the proposed test is more informative than the existing Anderson–Darling test. We expect that the proposed test will help the energy experts in the selection of appropriate statistical distribution for better estimation of energy produced devices.

Preliminaries

Let \(I_{{\text{N}}} \in \left[ {I_{{\text{L}}} , I_{{\text{U}}} } \right]\) be an indeterminacy interval. Suppose that \(X_{{\text{N}}} = X_{{\text{L}}} + X_{{\text{U}}} I_{{\text{N}}}\); \( I_{\rm N} \in \left[ {I_{\rm L} ,I_{\rm U} } \right] \) denotes the lifetime follows the neutrosophic Weibull distribution with neutrosophic scale parameter \(\theta_{N} = \theta_{L} + \theta_{U} I_{N}\); \(I_{{\text{N}}} \in \left[ {I_{{\text{L}}} , I_{{\text{U}}} } \right]\) and neutrosophic shape parameter \(\beta_{{\text{N}}} = \beta_{{\text{L}}} + \beta_{{\text{U}}} I_{{\text{N}}}\); \(I_{{\text{N}}} \in \left[ {I_{{\text{L}}} , I_{{\text{U}}} } \right]\). The neutrosophic cumulative distribution function (ncdf) is defined as
$$ F_{{\text{N}}} \left( {x_{{\text{N}}} } \right) = 1 - \exp \left\{ { - \left( {\frac{{x_{{\text{N}}} }}{{\theta_{{\text{N}}} }}} \right)^{{\beta_{{\text{N}}} }} } \right\};\;\theta_{{\text{N}}} \in \left[ {\theta_{{\text{L}}} , \theta_{{\text{U}}} } \right],\; \beta_{{\text{N}}} \in \left[ {\beta_{{\text{L}}} , \beta_{{\text{U}}} } \right],\;I_{{\text{N}}} \in \left[ {I_{{\text{L}}} , I_{{\text{U}}} } \right] $$
(1)
Note here that the neutrosophic Weibull distribution is given in Eq. (1) is the generalization of the Weibull distribution under classical statistics. The neutrosophic Weibull distribution reduces to the Weibull distribution under classical statistics if \(I_{{\text{L}}} = 0\).

Fitting of neutrosophic Weibull distribution

Now, we discuss the methodology to test the assumption either the given data having neutrosophic numbers follow the neutrosophic Weibull distribution or not. To develop the proposed test, it is assumed that the neutrosophic shape parameter and neutrosophic scale parameter of the neutrosophic Weibull distribution are unknown and estimated from the given neutrosophic data. The proposed test will be applied to test the null hypothesis that the neutrosophic data are fitted to the neutrosophic Weibull distribution versus the alternative hypothesis that the neutrosophic data do not follow the neutrosophic Weibull distribution. The goodness of fit test statistic, when the neutrosophic data do, not follows the neutrosophic statistics is given by
$$ \begin{aligned} {\text{AD}}_{{\text{N}}} & = \left[ {\mathop \sum \limits_{i} \frac{1 - 2i}{{n_{{\text{N}}} }}\left\{ {\ln \left( {1 - \exp \left( { - Z_{{\text{N}}} \left( i \right)} \right)} \right) - Z_{{n_{{\text{N}}} - i + 1}} } \right\} - n_{{\text{N}}} } \right];\\ &\quad n_{{\text{N}}} \in \left[ {n_{{\text{L}}} ,n_{{\text{U}}} } \right],\;{\text{AD}}_{{\text{N}}} \in \left[ {{\text{AD}}_{{\text{L}}} {\text{,AD}}_{{\text{U}}} } \right] \end{aligned} $$
(2)
where \(n_{{\text{N}}} \in \left[ {n_{{\text{L}}} ,n_{{\text{U}}} } \right]\) be a neutrosophic random sample and \(Z_{{\text{N}}} \left( i \right) = \left[ {x_{{\text{N}}} \left( i \right)/\theta_{{\text{N}}} } \right]^{{\beta_{{\text{N}}} }}\). According to Romeu [1], the Anderson–Darling test can be applied for small and large samples.
The neutrosophic form of statistic \({\text{AD}}_{{\text{N}}} \in \left[ {{\text{AD}}_{{\text{L}}} {\text{,AD}}_{{\text{U}}} } \right]\) can be expressed as follows
$$ {\text{AD}}_{{\text{N}}} {\text{ } = \text{ AD}}_{{\text{L}}} + {\text{AD}}_{{\text{U}}} I_{{\text{N}}} ;\;I_{{{\text{ND}}}} \in \left[ {I_{{{\text{LD}}}} ,I_{{{\text{UD}}}} } \right] $$
(3)
Note here that the proposed neutrosophic statistic \({\text{AD}}_{{\text{N}}} \in \left[ {{\text{AD}}_{{\text{L}}} {\text{,AD}}_{{\text{U}}} } \right]\) has two parts. The first part \({\text{AD}}_{{\text{L}}}\) is determined part and \({\text{AD}}_{{\text{U}}} I_{{{\text{ND}}}}\) is an indeterminate part of the test and \(I_{{{\text{ND}}}} \in \left[ {I_{{{\text{LD}}}} ,I_{{{\text{UD}}}} } \right]\) shows the indeterminate interval. The proposed statistic is the generalization of the goodness of fit test statistic under classical statistic discussed by Romeu and Grethlein [63], Amsc & CMPS [64] and Romeu [1]. The proposed test statistic reduces to the existing test statistic when \(I_{{\text{L}}}\) = 0. The modified statistic \({\text{AD}}_{{\text{N}}}^{*} \in \left[ {{\text{AD}}_{{\text{L}}}^{*} {\text{,AD}}_{{\text{U}}}^{*} } \right]\) is given by
$$ {\text{AD}}_{{\text{N}}}^{*} = \left( {1 + 0.2/\sqrt {n_{{\text{N}}} } } \right){\text{AD}}_{{\text{N}}} {;}\;\;n_{{\text{N}}} \in \left[ {n_{{\text{L}}} ,n_{{\text{U}}} } \right],\;{\text{AD}}_{{\text{N}}} \in \left[ {{\text{AD}}_{{\text{L}}},\,\, {\text{AD}}_{{\text{U}}} } \right] $$
(4)
The neutrosophic form of statistic \({\text{AD}}_{{\text{N}}}^{*} \in \left[ {{\text{AD}}_{{\text{L}}}^{*} {\text{,AD}}_{{\text{U}}}^{*} } \right]\) can be expressed as follows
$$ {\text{AD}}_{{\text{N}}}^{*} \;{ = }\;{\text{AD}}_{{\text{L}}}^{*} {\text{ } + \text{ AD}}_{{\text{U}}}^{*} I_{{\text{N}}} ;\;\;I_{{{\text{ND}}^{*} }} \in \left[ {I_{{{\text{LD}}^{*} }},\,\,I_{{{\text{UD}}^{*} }} } \right] $$
(5)
The statistic \({\text{AD}}_{{\text{N}}}^{*} \in \left[ {{\text{AD}}_{{\text{L}}}^{*} {\text{,AD}}_{{\text{U}}}^{*} } \right]\) reduces to statistic under classical statistics when no Neutrosophy is recorded. Note here that the first part of the neutrosophic form presents the statistic under classical statistics and \(D_{{\text{U}}}^{*} I_{{\text{N}}} ;\;I_{{{\text{ND}}^{*} }} \in \left[ {I_{{{\text{LD}}^{*} }} ,I_{{{\text{UD}}^{*} }} } \right]\) shows the indeterminate part, where \(I_{{{\text{ND}}^{*} }} \in \left[ {I_{{{\text{LD}}^{*} }} ,I_{{{\text{UD}}^{*} }} } \right]\) denotes the indeterminate interval associated with the statistic \( D_{{\text{N}}}^{*} \in \left[ {{\text{AD}}_{{\text{L}}}^{*} {,}\;{\text{AD}}_{{\text{U}}}^{*} } \right]\).
The p value of the test will be calculated using neutrosophic observed significance level (NOSL) which is given by
$$ \begin{aligned} {\text{OSL}}_{{\text{N}}} & = \frac{1}{{\left\{ {1 + \exp \left[ { - \;0.1 + 1.24\ln \left( {{\text{AD}}_{{\text{N}}}^{*} } \right) + 4.48\left( {{\text{AD}}_{{\text{N}}}^{*} } \right)} \right]} \right\}}};\\ &\quad {\text{OSL}}_{{\text{N}}} \in \left[ {{\text{OSL}}_{{\text{L}}} {\text{,OSL}}_{{\text{U}}} } \right] \end{aligned} $$
(6)
Based on the proposed test, if \({\text{OSL}}_{{\text{N}}} < 0.05\), the null hypothesis that the failure time having neutrosophic numbers follow the neutrosophic Weibull distribution is rejected and this error committed is less than 0.05. Based on this study, it is concluded that the given neutrosophic data do not fit the neutrosophic Weibull distribution if the calculated values of the statistic \({\text{OSL}}_{{\text{N}}}\) is less than 0.05, otherwise, the neutrosophic data follow the neutrosophic Weibull distribution. The operational process of the proposed test is shown in Fig. 1.

Application of the proposed test

To discuss the application of the proposed test, we consider a life test experiment where 23 batteries are put on the test. A tested battery is labeled as a failed item if at least one of its parts fails to meet the given specification limits. According to Khoolenjani and Shahsanaie [65] “tested the battery may be considered as failed, or—strictly speaking—as nonconforming, when at least one value of its parameters falls beyond specification limits. In practice, however, we do not have the possibility to measure all parameters and are not able to define precisely the moment of a failure”. The lifetime in 100 h of 23 batteries are given as follows
[2.9, 3.99], [5.24,7.2], [6.56,9.02], [7.14,9.82], [11.6,15.96], [12.14,16.69], [12.65,17.4], [13.24,18.21], [13.67,18.79], [13.88,19.09], [15.64,21.51], [17.05,23.45], [17.4,23.93], [17.8,24.48], [19.01,26.14], [19.34,26.59], [23.13,31.81], [23.34,32.09], [26.07,35.84], [30.29,41.65], [43.97,60.46], [48.09,66.13], [73.48,98.04].
The industrial engineer is interested to test either the given data follow the Weibull distribution or not. It is clear that the lifetime of batteries is given in indeterminacy interval rather than the exact number. For this data, the use Anderson–Darling goodness of fit test under classical statistics is not suitable. Therefore, the alternative of the existing test is the proposed Anderson–Darling goodness of fit test under neutrosophic statistics. The necessary computation to perform the proposed test is shown in Table 1. The values of the statistic \({\text{AD}}_{{\text{N}}} \in \left[ {{\text{AD}}_{{\text{L}}} {\text{,AD}}_{{\text{U}}} } \right]\) for the real data are shown as
Table 1
The necessary computations for the proposed test
Row
\(X_{{\text{N}}}\)
\(Z_{{\text{N}}} \left( i \right)\)
\(F_{{\text{N}}} \left( {X_{{\text{N}}} } \right)\)
1
[2.9, 3.99]
[0.0488, 0.04716]
[0.0476, 0.0460]
2
[5.24, 7.2]
[0.1158, 0.1129]
[0.1094, 0.1068]
3
[6.56, 9.02]
[0.1608, 0.1577]
[0.1486, 0.1458]
4
[7.14, 9.82]
[0.1820, 0.1788]
[0.1664, 0.1637]
5
[11.6, 15.96]
[0.3697, 0.3669]
[0.3090, 0.3071]
6
[12.14, 16.69]
[0.3951, 0.3920]
[0.3264, 0.3243]
7
[12.65, 17.4]
[0.4196, 0.4170]
[0.3427, 0.3409]
8
[13.24, 18.21]
[0.4485, 0.4460]
[0.3614, 0.3598]
9
[13.67, 18.79]
[0.4699, 0.4672]
[0.3749, 0.3732]
10
[13.88, 19.09]
[0.4805, 0.4783]
[0.3815, 0.3801]
11
[15.64, 21.51]
[0.572, 0.5707]
[0.4356, 0.4348]
12
[17.05, 23.45]
[0.6488, 0.6485]
[0.4773, 0.4771]
13
[17.4, 23.93]
[0.6683, 0.6682]
[0.4874, 0.4874]
14
[17.8, 24.48]
[0.6909, 0.6911]
[0.4988, 0.4990]
15
[19.01, 26.14]
[0.7605, 0.7616]
[0.5325, 0.5330]
16
[19.34, 26.59]
[0.7798, 0.7811]
[0.5415, 0.5421]
17
[23.13, 31.81]
[1.0126, 1.0184]
[0.6367, 0.6388]
18
[23.34, 32.09]
[1.0262, 1.0317]
[0.6416, 0.6436]
19
[26.07, 35.84]
[1.2060, 1.2150]
[0.7006, 0.7033]
20
[30.29, 41.65]
[1.5014, 1.5176]
[0.7771, 0.7807]
21
[43.97,60.46]
[2.5871, 2.6345]
[0.9247, 0.9282]
22
[48.09, 66.13]
[2.9485, 3.0083]
[0.9475, 0.9506]
23
[73.48, 98.04]
[5.4754, 5.3878]
[0.9958, 0.9954]
\({\text{Exp}}\left( {Z_{{\text{N}}} \left( i \right)} \right)\)
\({\ln}\left( {1 - {\text{Exp}}\left( {Z_{{\text{N}}} \left( i \right)} \right)} \right)\)
\(Z_{{n_{{\text{N}}} - i + 1}}\)
\(i{\text{th } - \text{ term}}\)
[0.9523, 0.9539]
[3.0432, 3.0776]
[5.4754,5.3878]
[1.4, 1.41]
[0.8905, 0.8931]
[2.2125, 2.2365]
[2.9485, 3.0083]
[2.5, 2.62]
[0.8513, 0.8541]
[1.9064, 1.92486]
[2.5871, 2.6345]
[3.7, 3.79]
[0.8335, 0.8362]
[1.7930, 1.80936]
[1.5014, 1.5176]
[3.8, 3.88]
[0.6909, 0.6928]
[1.1740, 1.18037]
[1.2060, 1.2150]
[3.5, 3.59]
[0.6735, 0.6756]
[1.1195, 1.12594]
[1.0262, 1.0317]
[3.9, 3.95]
[0.6572, 0.6590]
[1.0708, 1.07591]
[1.0127, 1.0184]
[4.5, 4.53]
[0.6385, 0.6401]
[1.0177, 1.02205]
[0.7798, 0.7811]
[4.4, 4.50]
[0.6250, 0.6267]
[0.9809, 0.98544]
[0.7605, 0.7616]
[4.9, 4.95]
[0.6184, 0.6198]
[0.9635, 0.9671]
[0.6909, 0.6911]
[5.2, 5.25]
[0.5643, 0.5651]
[0.8310, 0.83265]
[0.6683, 0.6682]
[5.2, 5.25]
[0.5226, 0.5228]
[0.7395, 0.73982]
[0.6488, 0.6485]
[5.3, 5.32]
[0.5125, 0.5125]
[0.7185, 0.71863]
[0.572, 0.5707]
[5.3, 5.37]
[0.5011, 0.5009]
[0.6953, 0.69514]
[0.4805, 0.4783]
[5.2, 5.28]
[0.4674, 0.4669]
[0.6300, 0.62905]
[0.4699, 0.4672]
[5.3, 5.29]
[0.4584, 0.4578]
[0.6133, 0.61229]
[0.4485, 0.4460]
[5.4, 5.46]
[0.3632, 0.3611]
[0.4513, 0.44811]
[0.4196, 0.4170]
[4.7, 4.75]
[0.3583, 0.3563]
[0.4437, 0.44067]
[0.3951, 0.3920]
[4.8, 4.85]
[0.2993, 0.2966]
[0.3557, 0.35196]
[0.3697, 0.3669]
[4.4, 4.43]
[0.2228, 0.2192]
[0.2520, 0.24748]
[0.1820, 0.1788]
[2.8, 2.77]
[0.0752, 0.0717]
[0.0782, 0.07445]
[0.1608, 0.1577]
[1.6, 1.58]
[0.0524, 0.0493]
[0.0538, 0.05063]
[0.1158, 0.1129]
[1.2, 1.17]
[0.0041, 0.0045]
[− 0.0042, 0.00458]
[0.0488, 0.0471]
[0.39,0.38]
\({\text{AD}}_{{\text{N}}} = \Big[ \mathop \sum \limits_{i} \frac{1 - 2i}{{\left[ {23,23} \right]}}\Big\{ \ln \left( {1 - \exp \left( { - Z_{{\text{N}}} \left( i \right)} \right)} \right) - Z_{{n_{{\text{N}}} - i + 1}} \Big\} - \left[ {23,23} \right] \Big];\;\;{\text{ AD}}_{{\text{N}}} \in \left[ {67.54, 67.47} \right].\)
The calculation for modified statistic \({\text{AD}}_{{\text{N}}}^{*} \in \left[ {{\text{AD}}_{{\text{L}}}^{*} {\text{,AD}}_{{\text{U}}}^{*} } \right]\) is shown as follows
\({\text{AD}}_{{\text{N}}}^{*} = \left( {1 + 0.2/\sqrt {\left[ {23,23} \right]} } \right)\left[ {67.54, 67.47} \right];\, {\text{AD}}_{{\text{N}}}^{*} \in [ 70.35,70.28 ]\); .
The approximate values \({\text{OSL}}_{{\text{N}}} \in \left[ {{\text{OSL}}_{{\text{L}}} {\text{,OSL}}_{{\text{U}}} } \right]\) is shown as follows
$$ \begin{aligned} {\text{OSL}}_{{\text{N}}} & = \frac{1}{{\left\{ {1 + \exp \left[ { - \;0.1 + 1.24\ln \left( {\left[ {70.35,70.28} \right]} \right) + 4.48\left( {\left[ {70.35,70.28} \right]} \right)} \right]} \right\}}};\\ &\quad {\text{OSL}}_{{\text{N}}} \in \left[ {0,0} \right] \end{aligned} $$
We note that \({\text{OSL}}_{{\text{N}}} < 0.05\) for the batteries’ data. Therefore, it is concluded that the lifetime of batteries does not follow the neutrosophic Weibull distribution. The operational process of the proposed test for the batteries’ data are shown in Fig. 2.

Comparative study

Now we compare the efficiency of the proposed Anderson–Darling goodness of fit test under neutrosophic statistics with the Anderson–Darling goodness of fit test under classical statistics in the measure of indeterminacy. For the fair comparison, we will fix the same values of \(n_{{\text{N}}} \in \left[ {n_{{\text{L}}} ,n_{{\text{U}}} } \right]\) as used in the real example. The values of the proposed statistic \({\text{AD}}_{{\text{N}}} \in \left[ {67.54, 67.47} \right]\) in neutrosophic form can be written as \({\text{AD}}_{{\text{N}}} = 67.54 - 67.47I_{{\text{N}}} ;\;I_{{\text{N}}} \in \left[ {0,0.001} \right]\). The values modified statistic \({\text{AD}}_{{\text{N}}}^{*} \in \left[ {70.35,70.28} \right]\) can be written as \({\text{AD}}_{{\text{N}}}^{*} = 70.35 - 70.28I_{{\text{N}}} ;\;I_{{\text{N}}} \in \left[ {0,0.0009} \right]\). Note here that the values 67.54 and 70.35 represent the values of Anderson–Darling the goodness of fit test under classical statistics when \(I_{{\text{N}}} = 0\). For the real data when \(\alpha\) = 0.05, the chance of accepting the null hypothesis is 0.95, the chance of rejecting the null hypothesis is 0.05 and measures of indeterminacy are 0.001 and 0.0009. From this study, it can be noted that the proposed Anderson–Darling, the goodness of fit test under neutrosophic statistics provides information about the measure of indeterminacy while the existing Anderson–Darling, the goodness of fit test, does not provide any information about the measure of indeterminacy. In addition, the existing test provides the exact values of the statistics that are not required in uncertainty. Therefore, the proposed test Anderson–Darling, the goodness of fit test, under neutrosophic statistics is quite effective to be applied under uncertainty.

Concluding remarks

In this paper, we presented the Anderson–Darling test under neutrosophic statistics. We presented the methodology to fit the neutrosophic Weibull distribution on the data. We discussed the testing procedure with the help of reliability data. We applied the proposed test for batteries’ failure data and found that the data do not follow the neutrosophic Weibull distribution. From the application and comparative studies, it can be concluded that the proposed test is more informative, flexible, and effective to be applied in an uncertainty environment as compared to the existing Anderson–Darling test. The proposed test provides information about the measure of indeterminacy for testing of the null hypothesis. The proposed test has the limitation that it can be applied to test either the data follow the non-normal distribution such as neutrosophic Weibull distribution. The proposed test can be modified for other distribution accordingly. The proposed test cannot apply for testing the hypothesis for neutrosophic normal distribution. The efficiency of the proposed test in the power of the test can be studied as future research. The proposed test can be applied for big data as future research. In addition, the proposed test can be extended for other non-normal distributions as future research.

Acknowledgements

The author is deeply thankful to the editor and the reviewers for their useful suggestions which really improve this manuscript.

Compliance with ethical standards

Conflict of interest

The author(s) declares that they have no conflict of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Romeu JL (2003) Anderson-Darling: a goodness of fit test for small samples assumptions. RAC START Romeu JL (2003) Anderson-Darling: a goodness of fit test for small samples assumptions. RAC START
2.
Zurück zum Zitat Arshad M, Rasool M, Ahmad M (2003) Anderson darling and modified Anderson darling tests for generalized pareto distribution. Pak J Appl Sci 3(2):85–88 Arshad M, Rasool M, Ahmad M (2003) Anderson darling and modified Anderson darling tests for generalized pareto distribution. Pak J Appl Sci 3(2):85–88
3.
Zurück zum Zitat Marsaglia G, Marsaglia J (2004) Evaluating the anderson-darling distribution. J Stat Softw 9(2):1–5 Marsaglia G, Marsaglia J (2004) Evaluating the anderson-darling distribution. J Stat Softw 9(2):1–5
4.
Zurück zum Zitat Razali NM, Wah YB (2011) Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. J Stat Model Anal 2(1):21–33 Razali NM, Wah YB (2011) Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. J Stat Model Anal 2(1):21–33
5.
Zurück zum Zitat Jäntschi L, Bolboacă SD (2018) Computation of probability associated with Anderson–Darling statistic. Mathematics 6(6):88MATH Jäntschi L, Bolboacă SD (2018) Computation of probability associated with Anderson–Darling statistic. Mathematics 6(6):88MATH
6.
Zurück zum Zitat Formenti M et al (2019) The efficiency of the Anderson-Darling test with a limited sample size: an application to backtesting counterparty credit risk internal models. J Risk 21:6 Formenti M et al (2019) The efficiency of the Anderson-Darling test with a limited sample size: an application to backtesting counterparty credit risk internal models. J Risk 21:6
7.
Zurück zum Zitat Islam TU (2019) Ranking of normality tests: an appraisal through skewed alternative space. Symmetry 11(7):872 Islam TU (2019) Ranking of normality tests: an appraisal through skewed alternative space. Symmetry 11(7):872
8.
Zurück zum Zitat Jäntschi L (2019) A test detecting the outliers for continuous distributions based on the cumulative distribution function of the data being tested. Symmetry 11(6):835 Jäntschi L (2019) A test detecting the outliers for continuous distributions based on the cumulative distribution function of the data being tested. Symmetry 11(6):835
9.
Zurück zum Zitat Jäntschi L (2020) Detecting extreme values with order statistics in samples from continuous distributions. Mathematics 8(2):216 Jäntschi L (2020) Detecting extreme values with order statistics in samples from continuous distributions. Mathematics 8(2):216
10.
Zurück zum Zitat Rahman M, Pearson LM, Heien HC (2006) A modified anderson-darling test for uniformity. Bull Malay Math Sci Soc 29:1MathSciNetMATH Rahman M, Pearson LM, Heien HC (2006) A modified anderson-darling test for uniformity. Bull Malay Math Sci Soc 29:1MathSciNetMATH
11.
Zurück zum Zitat Anderson TW (2011) Anderson-Darling tests of goodness-of-fit. Int Encycl Stat Sci 1:52–54 Anderson TW (2011) Anderson-Darling tests of goodness-of-fit. Int Encycl Stat Sci 1:52–54
12.
Zurück zum Zitat Li Y et al (2014) Modified anderson-darling test-based target detector in non-homogenous environments. Sensors 14(9):16046–16061 Li Y et al (2014) Modified anderson-darling test-based target detector in non-homogenous environments. Sensors 14(9):16046–16061
13.
Zurück zum Zitat Wijekularathna DK, Manage AB (2019) Scariano SM (2019) Power analysis of several normality tests: a Monte Carlo simulation study. Commun Stat Simul Comput 2019:1–17 Wijekularathna DK, Manage AB (2019) Scariano SM (2019) Power analysis of several normality tests: a Monte Carlo simulation study. Commun Stat Simul Comput 2019:1–17
14.
Zurück zum Zitat Zhang J, Lee J (2011) A review on prognostics and health monitoring of Li-ion battery. J Power Sourc 196(15):6007–6014 Zhang J, Lee J (2011) A review on prognostics and health monitoring of Li-ion battery. J Power Sourc 196(15):6007–6014
15.
Zurück zum Zitat He W et al (2011) Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method. J Power Sourc 196(23):10314–10321 He W et al (2011) Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method. J Power Sourc 196(23):10314–10321
16.
Zurück zum Zitat Nuhic A et al (2013) Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J Power Sourc 239:680–688 Nuhic A et al (2013) Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J Power Sourc 239:680–688
17.
Zurück zum Zitat Hu C, Youn BD, Chung J (2012) A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation. Appl Energy 92:694–704 Hu C, Youn BD, Chung J (2012) A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation. Appl Energy 92:694–704
18.
Zurück zum Zitat Ng SS, Xing Y, Tsui KL (2014) A naive Bayes model for robust remaining useful life prediction of lithium-ion battery. Appl Energy 118:114–123 Ng SS, Xing Y, Tsui KL (2014) A naive Bayes model for robust remaining useful life prediction of lithium-ion battery. Appl Energy 118:114–123
19.
Zurück zum Zitat Barré A et al (2014) Statistical analysis for understanding and predicting battery degradations in real-life electric vehicle use. J Power Sourc 245:846–856 Barré A et al (2014) Statistical analysis for understanding and predicting battery degradations in real-life electric vehicle use. J Power Sourc 245:846–856
20.
Zurück zum Zitat Chiodo E et al (2016) Probabilistic battery design based upon accelerated life tests. Intell Ind Syst 2(3):243–252 Chiodo E et al (2016) Probabilistic battery design based upon accelerated life tests. Intell Ind Syst 2(3):243–252
21.
Zurück zum Zitat Mathis TS et al (2019) Energy storage data reporting in perspective—guidelines for interpreting the performance of electrochemical energy storage systems. Adv Energy Mater 9(39):1902007 Mathis TS et al (2019) Energy storage data reporting in perspective—guidelines for interpreting the performance of electrochemical energy storage systems. Adv Energy Mater 9(39):1902007
22.
Zurück zum Zitat Shim J et al (2002) Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. J Power Sourc 112(1):222–230 Shim J et al (2002) Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. J Power Sourc 112(1):222–230
23.
Zurück zum Zitat Andre D et al (2013) Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries. J Power Sourc 224:20–27 Andre D et al (2013) Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries. J Power Sourc 224:20–27
24.
Zurück zum Zitat Xing Y et al (2014) State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures. Appl Energy 113:106–115 Xing Y et al (2014) State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures. Appl Energy 113:106–115
25.
Zurück zum Zitat Harris SJ, Harris DJ, Li C (2017) Failure statistics for commercial lithium ion batteries: a study of 24 pouch cells. J Power Sourc 342:589–597 Harris SJ, Harris DJ, Li C (2017) Failure statistics for commercial lithium ion batteries: a study of 24 pouch cells. J Power Sourc 342:589–597
26.
Zurück zum Zitat Arnold BF (1995) Statistical tests optimally meeting certain fuzzy requirements on the power function and on the sample size. Fuzzy Sets Syst 75(3):365–372MathSciNetMATH Arnold BF (1995) Statistical tests optimally meeting certain fuzzy requirements on the power function and on the sample size. Fuzzy Sets Syst 75(3):365–372MathSciNetMATH
27.
Zurück zum Zitat Grzegorzewski P (2000) Testing statistical hypotheses with vague data. Fuzzy Sets Syst 112(3):501–510MathSciNetMATH Grzegorzewski P (2000) Testing statistical hypotheses with vague data. Fuzzy Sets Syst 112(3):501–510MathSciNetMATH
28.
Zurück zum Zitat Jamkhaneh EB, Ghara AN (2010) Testing statistical hypotheses for compare means with vague data. In: International mathematical forum, Citeseer Jamkhaneh EB, Ghara AN (2010) Testing statistical hypotheses for compare means with vague data. In: International mathematical forum, Citeseer
29.
Zurück zum Zitat Montenegro M et al (2001) Two-sample hypothesis tests of means of a fuzzy random variable. Inf Sci 133(1–2):89–100MathSciNetMATH Montenegro M et al (2001) Two-sample hypothesis tests of means of a fuzzy random variable. Inf Sci 133(1–2):89–100MathSciNetMATH
30.
Zurück zum Zitat Taheri SM, Behboodian J (2002). Fuzzy hypotheses testing with fuzzy data: a Bayesian approach. In: AFSS international conference on fuzzy systems, Springer Taheri SM, Behboodian J (2002). Fuzzy hypotheses testing with fuzzy data: a Bayesian approach. In: AFSS international conference on fuzzy systems, Springer
31.
32.
Zurück zum Zitat Grzegorzewski P, Szymanowski H (2014) Goodness-of-fit tests for fuzzy data. Inf Sci 288:374–386MathSciNetMATH Grzegorzewski P, Szymanowski H (2014) Goodness-of-fit tests for fuzzy data. Inf Sci 288:374–386MathSciNetMATH
33.
Zurück zum Zitat Noughabi HA, Akbari M (2016) Testing Normality Based on Fuzzy Data. Int J Intell Technol Appl Stat 9:1 Noughabi HA, Akbari M (2016) Testing Normality Based on Fuzzy Data. Int J Intell Technol Appl Stat 9:1
34.
Zurück zum Zitat Momeni F, Gildeh BS, Hesamian G (2018) Kolmogorov-Smirnov two-sample test in fuzzy environment. J Hyperstruct 6:2MATH Momeni F, Gildeh BS, Hesamian G (2018) Kolmogorov-Smirnov two-sample test in fuzzy environment. J Hyperstruct 6:2MATH
35.
Zurück zum Zitat Van Cutsem B, Gath I (1993) Detection of outliers and robust estimation using fuzzy clustering. Comput Stat Data Anal 15(1):47–61MATH Van Cutsem B, Gath I (1993) Detection of outliers and robust estimation using fuzzy clustering. Comput Stat Data Anal 15(1):47–61MATH
36.
Zurück zum Zitat Mohanty V, Annan-Naidu P (2013) Fraud detection using outlier analysis: a survey. Int J Eng Sci Res Technol 2:6 Mohanty V, Annan-Naidu P (2013) Fraud detection using outlier analysis: a survey. Int J Eng Sci Res Technol 2:6
37.
Zurück zum Zitat Moradnezhadi YM (2014) Determination of a some simple methods for outlier detection in maximum daily rainfall (case study: Baliglichay Watershed Basin-Ardebil Province–Iran). Bull Env Pharmacol Life Sci 3(3):110–117 Moradnezhadi YM (2014) Determination of a some simple methods for outlier detection in maximum daily rainfall (case study: Baliglichay Watershed Basin-Ardebil Province–Iran). Bull Env Pharmacol Life Sci 3(3):110–117
38.
Zurück zum Zitat Moewes C, Mikut R, Kruse R (2015) Fuzzy control. In: Springer handbook of computational intelligence, Springer, p 269–283 Moewes C, Mikut R, Kruse R (2015) Fuzzy control. In: Springer handbook of computational intelligence, Springer, p 269–283
39.
Zurück zum Zitat Choi Y, Lee H, Irani Z (2018) Big data-driven fuzzy cognitive map for prioritising IT service procurement in the public sector. Ann Oper Res 270(1–2):75–104MathSciNet Choi Y, Lee H, Irani Z (2018) Big data-driven fuzzy cognitive map for prioritising IT service procurement in the public sector. Ann Oper Res 270(1–2):75–104MathSciNet
40.
Zurück zum Zitat Smarandache F (1998) Neutrosophy. In: Neutrosophic probability, set, and logic, proquest information & learning. Ann Arbor, vol 105, p 118–123 Smarandache F (1998) Neutrosophy. In: Neutrosophic probability, set, and logic, proquest information & learning. Ann Arbor, vol 105, p 118–123
41.
Zurück zum Zitat Smarandache F, Khalid HE (2015) Neutrosophic precalculus and neutrosophic calculus2015: infinite study Smarandache F, Khalid HE (2015) Neutrosophic precalculus and neutrosophic calculus2015: infinite study
42.
Zurück zum Zitat Hanafy I, Salama A, Mahfouz M (2013) Correlation coefficients of neutrosophic sets by centroid method2013: infinite study Hanafy I, Salama A, Mahfouz M (2013) Correlation coefficients of neutrosophic sets by centroid method2013: infinite study
43.
Zurück zum Zitat Broumi S, Smarandache F (2013) Correlation coefficient of interval neutrosophic set. In: Applied mechanics and materials, Trans Tech Publ Broumi S, Smarandache F (2013) Correlation coefficient of interval neutrosophic set. In: Applied mechanics and materials, Trans Tech Publ
44.
Zurück zum Zitat Guo Y, Sengur A (2015) NCM: Neutrosophic c-means clustering algorithm. Pattern Recogn 48(8):2710–2724 Guo Y, Sengur A (2015) NCM: Neutrosophic c-means clustering algorithm. Pattern Recogn 48(8):2710–2724
45.
Zurück zum Zitat Guo Y, Sengur A (2015) NECM: neutrosophic evidential c-means clustering algorithm. Neural Comput Appl 26(3):561–571 Guo Y, Sengur A (2015) NECM: neutrosophic evidential c-means clustering algorithm. Neural Comput Appl 26(3):561–571
46.
Zurück zum Zitat Guo Y, Şengür A, Tian J-W (2016) A novel breast ultrasound image segmentation algorithm based on neutrosophic similarity score and level set. Comput Methods Programs Biomed 123:43–53 Guo Y, Şengür A, Tian J-W (2016) A novel breast ultrasound image segmentation algorithm based on neutrosophic similarity score and level set. Comput Methods Programs Biomed 123:43–53
47.
Zurück zum Zitat Patro S, Smarandache F (2016) The Neutrosophic statistical distribution, more problems, More Solutions2016: infinite study Patro S, Smarandache F (2016) The Neutrosophic statistical distribution, more problems, More Solutions2016: infinite study
48.
Zurück zum Zitat Broumi S et al. (2018) Bipolar neutrosophic minimum spanning tree2018: infinite study Broumi S et al. (2018) Bipolar neutrosophic minimum spanning tree2018: infinite study
49.
Zurück zum Zitat Peng X, Dai J (2018) Approaches to single-valued neutrosophic MADM based on MABAC, TOPSIS and new similarity measure with score function. Neural Comput Appl 29(10):939–954 Peng X, Dai J (2018) Approaches to single-valued neutrosophic MADM based on MABAC, TOPSIS and new similarity measure with score function. Neural Comput Appl 29(10):939–954
50.
Zurück zum Zitat Abdel-Baset M, Chang V, Gamal A (2019) Evaluation of the green supply chain management practices: a novel neutrosophic approach. Comput Ind 108:210–220 Abdel-Baset M, Chang V, Gamal A (2019) Evaluation of the green supply chain management practices: a novel neutrosophic approach. Comput Ind 108:210–220
51.
Zurück zum Zitat Abdel-Basset M et al (2019) Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases. Artif Intell Med 101:101735 Abdel-Basset M et al (2019) Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases. Artif Intell Med 101:101735
52.
Zurück zum Zitat Abdel-Basset M et al (2019) Utilising neutrosophic theory to solve transition difficulties of IoT-based enterprises. Enterprise Inf Syst 2019:1–21 Abdel-Basset M et al (2019) Utilising neutrosophic theory to solve transition difficulties of IoT-based enterprises. Enterprise Inf Syst 2019:1–21
53.
Zurück zum Zitat Nabeeh NA et al (2019) An integrated neutrosophic-topsis approach and its application to personnel selection: a new trend in brain processing and analysis. IEEE Access 7:29734–29744 Nabeeh NA et al (2019) An integrated neutrosophic-topsis approach and its application to personnel selection: a new trend in brain processing and analysis. IEEE Access 7:29734–29744
54.
Zurück zum Zitat Pratihar J et al (2020) Transportation problem in neutrosophic environment. In: Neutrosophic graph theory and algorithms2020, IGI Global, p 180–212 Pratihar J et al (2020) Transportation problem in neutrosophic environment. In: Neutrosophic graph theory and algorithms2020, IGI Global, p 180–212
55.
Zurück zum Zitat Pratihar J et al (2020) Modified Vogel’s approximation method for transportation problem under uncertain environment. Complex Intell Syst 2020:1–12 Pratihar J et al (2020) Modified Vogel’s approximation method for transportation problem under uncertain environment. Complex Intell Syst 2020:1–12
56.
Zurück zum Zitat Smarandache F (2014) Introduction to neutrosophic statistics2014: infinite study Smarandache F (2014) Introduction to neutrosophic statistics2014: infinite study
57.
Zurück zum Zitat Chen J, Ye J, Du S (2017) Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics. Symmetry 9(10):208 Chen J, Ye J, Du S (2017) Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics. Symmetry 9(10):208
58.
Zurück zum Zitat Chen J et al (2017) Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers. Symmetry 9(7):123 Chen J et al (2017) Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers. Symmetry 9(7):123
59.
Zurück zum Zitat Aslam M (2019) Introducing Kolmogorov–Smirnov tests under uncertainty: an application to radioactive data. ACS Omega Aslam M (2019) Introducing Kolmogorov–Smirnov tests under uncertainty: an application to radioactive data. ACS Omega
60.
Zurück zum Zitat Aslam M (2020) Design of the Bartlett and Hartley tests for homogeneity of variances under indeterminacy environment. J Taibah Univ Sci 14(1):6–10 Aslam M (2020) Design of the Bartlett and Hartley tests for homogeneity of variances under indeterminacy environment. J Taibah Univ Sci 14(1):6–10
61.
Zurück zum Zitat Aslam M, Albassam M (2019) Application of neutrosophic logic to evaluate correlation between prostate cancer mortality and dietary fat assumption. Symmetry 11(3):330 Aslam M, Albassam M (2019) Application of neutrosophic logic to evaluate correlation between prostate cancer mortality and dietary fat assumption. Symmetry 11(3):330
62.
Zurück zum Zitat Aslam M (2019) (2019) Neutrosophic analysis of variance: application to university students. Complex Intell Syst 2019:1–5 Aslam M (2019) (2019) Neutrosophic analysis of variance: application to university students. Complex Intell Syst 2019:1–5
63.
Zurück zum Zitat Romeu JL, Grethlein CE (2000) A practical guide to statistical analysis of material property Data2000: advanced materials and process information analysis center Romeu JL, Grethlein CE (2000) A practical guide to statistical analysis of material property Data2000: advanced materials and process information analysis center
64.
Zurück zum Zitat Amsc N, CMPS AA (2002) Composite materials handbook. In: Polymer matrix composites materials usage, design, and analysis Amsc N, CMPS AA (2002) Composite materials handbook. In: Polymer matrix composites materials usage, design, and analysis
65.
Zurück zum Zitat Khoolenjani NB, Shahsanaie F (2016) Estimating the parameter of exponential distribution under Type-II censoring from fuzzy data. J Stat Theory Appl 15(2):181–195MathSciNet Khoolenjani NB, Shahsanaie F (2016) Estimating the parameter of exponential distribution under Type-II censoring from fuzzy data. J Stat Theory Appl 15(2):181–195MathSciNet
Metadaten
Titel
A new goodness of fit test in the presence of uncertain parameters
verfasst von
Muhammad Aslam
Publikationsdatum
16.10.2020
Verlag
Springer International Publishing
Erschienen in
Complex & Intelligent Systems / Ausgabe 1/2021
Print ISSN: 2199-4536
Elektronische ISSN: 2198-6053
DOI
https://doi.org/10.1007/s40747-020-00214-8

Weitere Artikel der Ausgabe 1/2021

Complex & Intelligent Systems 1/2021 Zur Ausgabe