Skip to main content

2013 | OriginalPaper | Buchkapitel

A Novel Fuzzy Neural Network Controller for Maglev System with Controlled-PM Electromagnets

verfasst von : Seng-Chi Chen, Ying-Jyh Lin, Van-Sum Nguyen, Ming-Mao Hsu

Erschienen in: Intelligent Technologies and Engineering Systems

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter proposed an intelligent control method for the positioning of a hybrid magnetic levitation (Maglev) system, using the emerging approaches of fuzzy logic and artificial neural network (ANN). A Maglev system depends on controlling the air gap of the electromagnetic actuator. In practice, no precise mathematical model can be established because this hybrid Maglev system is inherently unstable in the direction of levitation, and the relationships between current and electromagnetic force are highly nonlinear. Fuzzy logic has emerged as a mathematical tool to deal with the uncertainties in human perception and reasoning. It also provides a framework for an inference mechanism that allows for approximate human reasoning capabilities to be applied to knowledge-based systems. Moreover, ANNs have emerged as fast computation tools with learning and adaptive capabilities. Recently, these two fields have been integrated into a new emerging technology called fuzzy neural networks (FNN) which combine the benefits of each field. In the method that is proposed herein, the control model uses Takagi-Sugeno fuzzy logic, in which the back-propagation algorithm processes information from neural networks to make suitable adjustments to the parameter of the fuzzy logic controller (FLC) and the control signal for object output tracking of the input. This method can then be applied to improve the control performance of nonlinear systems. System responses transient performance and steady-state performance various processes that are by using a FNN that must be trained through a learning process, to yield suitable membership functions and weightings. The result on the Maglev system of a simulation indicates that the system response satisfies the control performance without overshoot, zero-error steady state, and obtaining the rise time within 0.1 s. The proposed controller can be feasibly applied to Maglev systems with various external disturbances, and the effectiveness of the FNN with self-learning and self-improving capacities is proven.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nakashima H (1994) The superconducting magnet for the maglev transport system. IEEE Trans Magn 30:1572–1578MathSciNetCrossRef Nakashima H (1994) The superconducting magnet for the maglev transport system. IEEE Trans Magn 30:1572–1578MathSciNetCrossRef
2.
Zurück zum Zitat Lin CT, Jou CP (2000) GA-base fuzzy reinforcement learning for control of a magnetic bearing system. IEEE Trans Syst Man Cybern B 30:276–289 Lin CT, Jou CP (2000) GA-base fuzzy reinforcement learning for control of a magnetic bearing system. IEEE Trans Syst Man Cybern B 30:276–289
3.
Zurück zum Zitat Oshima M (2010) Decoupling method of radial forces in a dual rotor-type magnetic suspension motor. IEEE IPEC, pp 2197–2203 Oshima M (2010) Decoupling method of radial forces in a dual rotor-type magnetic suspension motor. IEEE IPEC, pp 2197–2203
4.
Zurück zum Zitat Dias JM, Dourado A (1999) A self-organizing fuzzy controller with a fixed maximum number of rules and an adaptive similarity factor. Fuzzy Set Syst 103:27–48CrossRef Dias JM, Dourado A (1999) A self-organizing fuzzy controller with a fixed maximum number of rules and an adaptive similarity factor. Fuzzy Set Syst 103:27–48CrossRef
5.
Zurück zum Zitat Nurnberger A, Nauck D, Kruse R (1999) Neuro-fuzzy control based on the nefcon-model: recent developments. Soft Comput 2:168–182CrossRef Nurnberger A, Nauck D, Kruse R (1999) Neuro-fuzzy control based on the nefcon-model: recent developments. Soft Comput 2:168–182CrossRef
6.
Zurück zum Zitat Chen SC, Tung PC (2000) Application of a rule self-regulating fuzzy controller for robotic deburring on unknown contours. Fuzzy Set Syst 110:341–350CrossRef Chen SC, Tung PC (2000) Application of a rule self-regulating fuzzy controller for robotic deburring on unknown contours. Fuzzy Set Syst 110:341–350CrossRef
7.
Zurück zum Zitat Ordonez R, Passino KM (1999) Stable multi-input multi- output adaptive fuzzy/neural control. IEEE Trans Fuzzy Syst 7:345–353CrossRef Ordonez R, Passino KM (1999) Stable multi-input multi- output adaptive fuzzy/neural control. IEEE Trans Fuzzy Syst 7:345–353CrossRef
8.
Zurück zum Zitat Chen SC, Nguyen VS, Chang G (2012) Application of self-tuning fuzzy PID controller on magnetic levitation system. In: 2012 the 11th Taiwan power electronics conference & exhibition, National TsingHua University, Hsinchu, 2012 Chen SC, Nguyen VS, Chang G (2012) Application of self-tuning fuzzy PID controller on magnetic levitation system. In: 2012 the 11th Taiwan power electronics conference & exhibition, National TsingHua University, Hsinchu, 2012
10.
Zurück zum Zitat Chopra S, Mitra R, Kumar V (2005) Identification of self-tuning fuzzy PI type controllers with reduced rule set. In: Proceedings of the IEEE international conference on networking, Sensing and Control, Arizona, 2005, pp. 537–542 Chopra S, Mitra R, Kumar V (2005) Identification of self-tuning fuzzy PI type controllers with reduced rule set. In: Proceedings of the IEEE international conference on networking, Sensing and Control, Arizona, 2005, pp. 537–542
11.
Zurück zum Zitat Jang JS (1993) ANFIS: adaptive network based fuzzy inference system. IEEE Trans Syst Man Cybern 23:668–685CrossRef Jang JS (1993) ANFIS: adaptive network based fuzzy inference system. IEEE Trans Syst Man Cybern 23:668–685CrossRef
Metadaten
Titel
A Novel Fuzzy Neural Network Controller for Maglev System with Controlled-PM Electromagnets
verfasst von
Seng-Chi Chen
Ying-Jyh Lin
Van-Sum Nguyen
Ming-Mao Hsu
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-6747-2_65

Neuer Inhalt