Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

24.03.2017 | Regular Research Paper | Ausgabe 3/2018

Memetic Computing 3/2018

A novel recommendation system in location-based social networks using distributed ELM

Zeitschrift:
Memetic Computing > Ausgabe 3/2018
Autoren:
Xiangguo Zhao, Zhongyu Ma, Zhen Zhang

Abstract

Location-based social networks (LBSNs) have become a popular platform for people to communicate with each other. The recommendation problem has attracted considerable attention in both academia and industry as increasingly more users share their experiences and feelings using LBSNs. Machine learning has been widely used in many recommendation systems for recommending new friends or places of interest (POIs) to users in LBSNs. However, the majority of the existing recommendation systems were single function and only used small-scale datasets to provide recommendation services. In the era of big data, recommendation systems should have the ability to fully utilize limited computing resources for mining potential relationships from large-scale LBSN data. In this paper, a novel generic recommendation system is proposed by utilizing a distributed extreme learning machine called GR-DELM, which considers both friend recommendation and POI recommendation in large-scale datasets. For POI recommendation, three features are extracted: (1) geography-influenced feature, (2) popularity-influenced feature, and (3) social-influenced feature. For friend recommendation, two features are extracted: (1) neighborhood-based feature and (2) path-based feature. These features further improve the efficiency and accuracy of large-scale recommendation. Finally, a series of experiments demonstrate that the GR-DELM system outperforms the existing recommendation systems.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2018

Memetic Computing 3/2018 Zur Ausgabe

Editorial

Editorial

Premium Partner

    Bildnachweise