Skip to main content
Erschienen in: Strength of Materials 1/2022

06.05.2022

A Numerical Investigation on the Drying Process of Laminated Green Body Manufactured by 3D Gel-Printing of Metal Power

verfasst von: B. Guan, H. P. Wen, Y. Zang, B. S. Luo

Erschienen in: Strength of Materials | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to predict the temperature, humidity and deformation of the 3D gel-printing metal laminated green body during the drying process. This paper presents a mathematical model of solving the coupled temperature, moisture, and stress-strain fields during the drying process. This model was established on the Luikov’s irreversible thermodynamics and material mechanics. It was numerically solved based on the discrete difference method, and it was implemented into numerical simulations through a combination of sequence and direct coupling method. The results have shown that, for the temperature field, green body temperature field approached to be steady in a short time during drying. For the moisture field, moisture migration exhibited between materials with different initial moisture contents. While for the stress-strain fields, obvious tensile stress state was experienced on the edges of green body longitudinal sides. The research carried out in this paper contributes to provide a comprehensive guide of the process planning of drying process of green body.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W. Terry, “Additive Manufacturing and 3D Printing State of the Industry”, Annual Worldwide Progress Report, Wohlers Associates (2012). W. Terry, “Additive Manufacturing and 3D Printing State of the Industry”, Annual Worldwide Progress Report, Wohlers Associates (2012).
2.
Zurück zum Zitat E. Forrest, Y. Cao, “Digital additive manufacturing: a paradigm shift in the production process and its socioeconomic impacts,” Eng. Manag. Res. 2, No.2, 66-70 (2013).CrossRef E. Forrest, Y. Cao, “Digital additive manufacturing: a paradigm shift in the production process and its socioeconomic impacts,” Eng. Manag. Res. 2, No.2, 66-70 (2013).CrossRef
3.
Zurück zum Zitat E. O. Olakanmi, R. F. Cochrane, K. W. Dalgarno, “A review on selective laser sintering/melting (sls/slm) of aluminium alloy particles: processing, microstructure and properties,” Prog. Mater. Sci., 74, 401–477 (2015).CrossRef E. O. Olakanmi, R. F. Cochrane, K. W. Dalgarno, “A review on selective laser sintering/melting (sls/slm) of aluminium alloy particles: processing, microstructure and properties,” Prog. Mater. Sci., 74, 401–477 (2015).CrossRef
4.
Zurück zum Zitat X. Y. Ren, H. P. Shao, “3D Gel-printing-An additive manufacturing method for producing complex shape parts,” Mater. Des., 101, 80-87 (2016).CrossRef X. Y. Ren, H. P. Shao, “3D Gel-printing-An additive manufacturing method for producing complex shape parts,” Mater. Des., 101, 80-87 (2016).CrossRef
5.
Zurück zum Zitat H. Shao, D. Zhao, T. Lin, J. He, J. Wu, “3D Gel-printing of zirconia ceramic parts,” Ceram. Int., 43, No. 16, 13938-13942 (2017).CrossRef H. Shao, D. Zhao, T. Lin, J. He, J. Wu, “3D Gel-printing of zirconia ceramic parts,” Ceram. Int., 43, No. 16, 13938-13942 (2017).CrossRef
6.
Zurück zum Zitat D. Guo, K. Cai, L, Li, Z. Gui, “Application of gelcasting to the fabrication of piezoelectric ceramic parts,” J. Eur. Ceram. Soc., 23, No.7, 1131-1137 (2003). D. Guo, K. Cai, L, Li, Z. Gui, “Application of gelcasting to the fabrication of piezoelectric ceramic parts,” J. Eur. Ceram. Soc., 23, No.7, 1131-1137 (2003).
7.
Zurück zum Zitat S. Ghosal, A. Emami-Naeini, Y. Harn, B. S. Draskovich, J. P. Pollinger, “A physical model for the drying of gelcast ceramics,” J. Eur. Ceram. Soc., 82, No. 3, 513-520 (2010).CrossRef S. Ghosal, A. Emami-Naeini, Y. Harn, B. S. Draskovich, J. P. Pollinger, “A physical model for the drying of gelcast ceramics,” J. Eur. Ceram. Soc., 82, No. 3, 513-520 (2010).CrossRef
8.
Zurück zum Zitat R. Gillissen, J. P. Erauw, A. Smolders, E. Vanswijgenhoven, J. Luyten, “Gelcasting, a near net shape technique,” Mater. Des., 21, No. 4, 251-257 (2000).CrossRef R. Gillissen, J. P. Erauw, A. Smolders, E. Vanswijgenhoven, J. Luyten, “Gelcasting, a near net shape technique,” Mater. Des., 21, No. 4, 251-257 (2000).CrossRef
9.
Zurück zum Zitat X. Liu, Y. Chen, H. Ge, P. Fazio, G. Chen, “Numerical investigation for thermal performance of exterior walls of residential buildings with moisture transfer in hot summer and cold winter zone of China,” Energy Build. 93, 259-268 (2015).CrossRef X. Liu, Y. Chen, H. Ge, P. Fazio, G. Chen, “Numerical investigation for thermal performance of exterior walls of residential buildings with moisture transfer in hot summer and cold winter zone of China,” Energy Build. 93, 259-268 (2015).CrossRef
10.
Zurück zum Zitat M. Maliki, N. Laredj, N. Hassan, K. Bendani, H. Missoum, “Numerical modelling of hygrothermal response in building envelopes,” Gradevinar, 66, No.11, 987-995 (2014). M. Maliki, N. Laredj, N. Hassan, K. Bendani, H. Missoum, “Numerical modelling of hygrothermal response in building envelopes,” Gradevinar, 66, No.11, 987-995 (2014).
11.
Zurück zum Zitat J. Wyrwał, A. Marynowicz, “Vapour condensation and moisture accumulation in porous building wall,” Build. Environ., 37, No. 3, 313-318 (2002).CrossRef J. Wyrwał, A. Marynowicz, “Vapour condensation and moisture accumulation in porous building wall,” Build. Environ., 37, No. 3, 313-318 (2002).CrossRef
12.
Zurück zum Zitat F. Kong, H. Wang, “Heat and mass coupled transfer combined with freezing process in building materials: modeling and experimental verification,” Energy Build., 43, No.10, 2850-2859 (2011).CrossRef F. Kong, H. Wang, “Heat and mass coupled transfer combined with freezing process in building materials: modeling and experimental verification,” Energy Build., 43, No.10, 2850-2859 (2011).CrossRef
13.
Zurück zum Zitat J. T. Fan, Z. X. Luo, Y. Li, “Heat and moisture transfer with sorption and condensation in porous clothing assemblies and numerical simulation,” Int. J. Heat Mass Tran., 44, No. 5, 1079-1079 (2001).CrossRef J. T. Fan, Z. X. Luo, Y. Li, “Heat and moisture transfer with sorption and condensation in porous clothing assemblies and numerical simulation,” Int. J. Heat Mass Tran., 44, No. 5, 1079-1079 (2001).CrossRef
14.
Zurück zum Zitat J. Fan, X. Cheng, X. Wen, W. Sun, “An Improved model of heat and moisture transfer with phase change and mobile condensates in fibrous insulation and comparison with experimental results,” Int. J. Heat Mass Tran., 47, No. 10, 2343-2352 (2004).CrossRef J. Fan, X. Cheng, X. Wen, W. Sun, “An Improved model of heat and moisture transfer with phase change and mobile condensates in fibrous insulation and comparison with experimental results,” Int. J. Heat Mass Tran., 47, No. 10, 2343-2352 (2004).CrossRef
15.
Zurück zum Zitat M. Fu, M. Q. Yuan, W. G. Weng, “Modeling of heat and moisture transfer within firefighter protective clothing with the moisture absorption of thermal radiation,” Int. J. Therm. Sci., 96, 201-210 (2015).CrossRef M. Fu, M. Q. Yuan, W. G. Weng, “Modeling of heat and moisture transfer within firefighter protective clothing with the moisture absorption of thermal radiation,” Int. J. Therm. Sci., 96, 201-210 (2015).CrossRef
16.
Zurück zum Zitat S. Ghosal, A. Emami-Naeini, Y. Harn, B.S. Draskovich, J.P. Pollinger, “A physical model for the drying of gelcast ceramics,” J. Am. Ceram. Soc., 82, No.3, 513-520 (2010).CrossRef S. Ghosal, A. Emami-Naeini, Y. Harn, B.S. Draskovich, J.P. Pollinger, “A physical model for the drying of gelcast ceramics,” J. Am. Ceram. Soc., 82, No.3, 513-520 (2010).CrossRef
17.
Zurück zum Zitat X. Peng, S. Shimai, Y. Sun, G. Zhou, S. Wang, “Correlation between microstructure evolution and drying behavior of gelcast alumina green bodies,” Ceram. Int., 41, No. 9, 11870-11875 (2015).CrossRef X. Peng, S. Shimai, Y. Sun, G. Zhou, S. Wang, “Correlation between microstructure evolution and drying behavior of gelcast alumina green bodies,” Ceram. Int., 41, No. 9, 11870-11875 (2015).CrossRef
18.
Zurück zum Zitat A. Barati, M. Kokabi, N.Famili, “Modeling of liquid desiccant drying method for gelcast ceramic parts,” Ceram. Int., 29, No. 2, 199-207(2003).CrossRef A. Barati, M. Kokabi, N.Famili, “Modeling of liquid desiccant drying method for gelcast ceramic parts,” Ceram. Int., 29, No. 2, 199-207(2003).CrossRef
19.
Zurück zum Zitat A. V. Luikov, “Heat and mass transfer in capillary-porous bodies,” Adv. Heat Transfer, 1, No.1, 123-184 (1964).CrossRef A. V. Luikov, “Heat and mass transfer in capillary-porous bodies,” Adv. Heat Transfer, 1, No.1, 123-184 (1964).CrossRef
20.
Zurück zum Zitat L. Soudani, A. Fabbri, M. Woloszyn, J. C. Morel, P. A. Chabriac, “Assessment of the validity of some common assumptions in hygrothermal modelling of earth based materials,” Energy Build., 116, 498-511 (2016).CrossRef L. Soudani, A. Fabbri, M. Woloszyn, J. C. Morel, P. A. Chabriac, “Assessment of the validity of some common assumptions in hygrothermal modelling of earth based materials,” Energy Build., 116, 498-511 (2016).CrossRef
21.
Zurück zum Zitat M. Faiza, A. Kamilia, E. G. Mohammed, B. Rachid, G. Slimane, “Numerical analysis of ham transfers in a wooden building material,” Thermal Sci., 21, No.2, 785-795 (2016). M. Faiza, A. Kamilia, E. G. Mohammed, B. Rachid, G. Slimane, “Numerical analysis of ham transfers in a wooden building material,” Thermal Sci., 21, No.2, 785-795 (2016).
22.
Zurück zum Zitat H. Narang, F. Wu, A. Ogunniyan, “Numerical solutions of heat and mass transfer with the first kind boundary and initial conditions in capillary porous cylinder using programmable graphics hardware,” Int. J. Adv. Comput. Sci. Appl., 7, No. 6, 60-65 (2016). H. Narang, F. Wu, A. Ogunniyan, “Numerical solutions of heat and mass transfer with the first kind boundary and initial conditions in capillary porous cylinder using programmable graphics hardware,” Int. J. Adv. Comput. Sci. Appl., 7, No. 6, 60-65 (2016).
23.
Zurück zum Zitat S. Cheroto, S. M. S. Guigon, J. W. Ribeiro, “Lumped differential formulations for drying in capillary porous media,” Dry Technol. 15, No. 3, 811-835 (1997).CrossRef S. Cheroto, S. M. S. Guigon, J. W. Ribeiro, “Lumped differential formulations for drying in capillary porous media,” Dry Technol. 15, No. 3, 811-835 (1997).CrossRef
24.
Zurück zum Zitat O. Fudym, J. C. Batsale, R. Santander, “Analytical solution of coupled diffusion equations in semi-infinite media,” Heat Transfer, 126, No.3, 471-475 (2004).CrossRef O. Fudym, J. C. Batsale, R. Santander, “Analytical solution of coupled diffusion equations in semi-infinite media,” Heat Transfer, 126, No.3, 471-475 (2004).CrossRef
25.
Zurück zum Zitat W. J. Chang, C. L. Weng, “An analytical solution to coupled heat and moisture diffusion transfer in porous materials,” Int. J. Heat Mass Tran., 43, No. 19, 3621-3632 (2000).CrossRef W. J. Chang, C. L. Weng, “An analytical solution to coupled heat and moisture diffusion transfer in porous materials,” Int. J. Heat Mass Tran., 43, No. 19, 3621-3632 (2000).CrossRef
26.
Zurück zum Zitat M. H. Qin, R. Belarbi, A. Aït-Mokhtar, A. Seigneurin, “An analytical method to calculate the coupled heat and moisture transfer in building materials,” Int. Commun. Heat Mass Transf., 33, No. 1, 39-48 (2006).CrossRef M. H. Qin, R. Belarbi, A. Aït-Mokhtar, A. Seigneurin, “An analytical method to calculate the coupled heat and moisture transfer in building materials,” Int. Commun. Heat Mass Transf., 33, No. 1, 39-48 (2006).CrossRef
27.
Zurück zum Zitat K. Abahri, R. Belarbi, A. Trabelsi, “Contribution to analytical and numerical study of combined heat and moisture transfers in porous building materials,” Build. Environ., 46, No. 7, 1354-1360 (2011).CrossRef K. Abahri, R. Belarbi, A. Trabelsi, “Contribution to analytical and numerical study of combined heat and moisture transfers in porous building materials,” Build. Environ., 46, No. 7, 1354-1360 (2011).CrossRef
28.
Zurück zum Zitat F. P. Incropera, D. Dewitt, “Fundamentals of Heat and Mass Transfer,” John Wiley & Sons, New York (1990). F. P. Incropera, D. Dewitt, “Fundamentals of Heat and Mass Transfer,” John Wiley & Sons, New York (1990).
Metadaten
Titel
A Numerical Investigation on the Drying Process of Laminated Green Body Manufactured by 3D Gel-Printing of Metal Power
verfasst von
B. Guan
H. P. Wen
Y. Zang
B. S. Luo
Publikationsdatum
06.05.2022
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 1/2022
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-022-00380-9

Weitere Artikel der Ausgabe 1/2022

Strength of Materials 1/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.