Skip to main content
Erschienen in: Shape Memory and Superelasticity 3/2019

23.07.2019 | Technical Article

A Practitioner’s Perspective of Hydrogen in Ni-Ti Alloys

verfasst von: Tom Duerig, Oren Shelley, Daniel Madamba, Lot Vien

Erschienen in: Shape Memory and Superelasticity | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nearly all studies of hydrogen in Ni-Ti (Nitinol) report bulk or average hydrogen content, thereby assuming that hydrogen is homogeneously distributed. Yet hydrogen is invariably locally introduced, and thus its distribution is far from homogeneous: immediately after charging, bulk hydrogen might measure 50 wppm, while localized levels may exceed 3000 ppm. This paper treats several aspects of hydrogen in Ni-Ti, recognizing that its effects are localized and highly dynamic. With this in mind, the process of hydrogen uptake is discussed, along with how quickly it migrates and where it resides on the lattice. It is shown that as little as 100 wppm hydrogen can completely suppress the austenite–martensite transformation, and that suppression is a kinetic rather than a thermodynamic issue. Ductility is profoundly affected as well, but in a time-dependent manner based on the diffusion of hydrogen—tensile samples are fully ductile after charging, but become fully brittle hours later. Fatigue is affected to a lesser extent, although again, there are pronounced room-temperature aging considerations. Finally, the “safe limit” for hydrogen is discussed, concluding that the existing 50 wppm ASTM threshold is reasonable, but with the very important caveat that the hydrogen has been allowed to homogenize.
Fußnoten
1
The hyphenated “Ni-Ti” will refer to the overall alloy, often referred to as “Nitinol,” which may contain many intermetallic phases. “NiTi” will specifically refer to the equiatomic compound, which can in turn exist as three different crystal structures: the cubic B2 austenite phase, the hexagonal R-phase, and the monoclinic B19’ martensite.
 
2
The diffusion equation in cylindrical coordinates are solved using a Bessel’s function, providing the concentration as a function of depth. The bulk hydrogen measurements are then modeled by integrating the concentration-depth profile to the electropolished diameters.
 
Literatur
1.
Zurück zum Zitat Fushimi K, Stratmann M, Hassel A (2006) Electropolishing of NiTi shape memory alloys in methanoloic H2SO4. Electrochim Acta 52:1290CrossRef Fushimi K, Stratmann M, Hassel A (2006) Electropolishing of NiTi shape memory alloys in methanoloic H2SO4. Electrochim Acta 52:1290CrossRef
2.
Zurück zum Zitat Devilliers D, Dinh MT, Mahle E, Krulic D, Larabi N, Fatouros N (2006) Behaviour of titanium in sulphuric acid. J New Mater Electrochem Syst 9:221 Devilliers D, Dinh MT, Mahle E, Krulic D, Larabi N, Fatouros N (2006) Behaviour of titanium in sulphuric acid. J New Mater Electrochem Syst 9:221
3.
Zurück zum Zitat Muralidharan VS, Veerashanmugamani M, Kalaignan GP (1985) Mechanism of corrosion of pure nickel in sulphuric acid solutions. Bull Electrochem 1(3):241 Muralidharan VS, Veerashanmugamani M, Kalaignan GP (1985) Mechanism of corrosion of pure nickel in sulphuric acid solutions. Bull Electrochem 1(3):241
4.
Zurück zum Zitat (2003) ASM handbook volume 13A corrosion: fundamentals, testing and protection, p 921 (2003) ASM handbook volume 13A corrosion: fundamentals, testing and protection, p 921
5.
Zurück zum Zitat Landolt D (2007) Corrosion and surface chemistry of metals. EPFL Press, Lausanne, p 489CrossRef Landolt D (2007) Corrosion and surface chemistry of metals. EPFL Press, Lausanne, p 489CrossRef
6.
Zurück zum Zitat Burch R, Mason NB, Faraday JCS (1979) Absorption of hydrogen by titanium-cobalt and titanium-nickel intermetallic alloy. J Chem Soc Faraday Trans 1 75:561CrossRef Burch R, Mason NB, Faraday JCS (1979) Absorption of hydrogen by titanium-cobalt and titanium-nickel intermetallic alloy. J Chem Soc Faraday Trans 1 75:561CrossRef
7.
Zurück zum Zitat Schmidt R, Schlereth M, Wipf H, Assmus W, Müllner M (1989) Hydrogen solubility and diffusion in the shape memory alloy NiTi. J Phys 1:2473 Schmidt R, Schlereth M, Wipf H, Assmus W, Müllner M (1989) Hydrogen solubility and diffusion in the shape memory alloy NiTi. J Phys 1:2473
8.
Zurück zum Zitat Biscarini A et al (1999) Martensitic transitions and mechanical spectroscopy of Ni50.8Ti49.2 alloy containing hydrogen. Acta Mater 47(18):4525CrossRef Biscarini A et al (1999) Martensitic transitions and mechanical spectroscopy of Ni50.8Ti49.2 alloy containing hydrogen. Acta Mater 47(18):4525CrossRef
9.
Zurück zum Zitat Sheriff J, Pelton AR, Pruitt LA (2004) Hydrogen effects on nitinol fatigue. In: Proceedings of international conference on shape memory and superelastic alloys Sheriff J, Pelton AR, Pruitt LA (2004) Hydrogen effects on nitinol fatigue. In: Proceedings of international conference on shape memory and superelastic alloys
10.
Zurück zum Zitat Wu SK, Wayman CM (1988) Interstitial ordering of hydrogen and oxygen in TiNi alloys. Acta Metall 36:1005CrossRef Wu SK, Wayman CM (1988) Interstitial ordering of hydrogen and oxygen in TiNi alloys. Acta Metall 36:1005CrossRef
11.
Zurück zum Zitat Kang D-B (2006) The bonding of interstitial hydrogen in the NiTi intermetallic compound. Bull Korean Chem Soc 27(12):2045CrossRef Kang D-B (2006) The bonding of interstitial hydrogen in the NiTi intermetallic compound. Bull Korean Chem Soc 27(12):2045CrossRef
12.
Zurück zum Zitat Holec D, Friak M, Dlouhy A, Neugebauer J (2014) Ab initio study of point defects in NiTi-based alloys. Phys Rev B 89:14110CrossRef Holec D, Friak M, Dlouhy A, Neugebauer J (2014) Ab initio study of point defects in NiTi-based alloys. Phys Rev B 89:14110CrossRef
13.
Zurück zum Zitat Soubeyroux JL et al (1993) Structural study of the hydrides NiTiHx (s = 1.0 and 1.4). J Alloys Compd 196:127CrossRef Soubeyroux JL et al (1993) Structural study of the hydrides NiTiHx (s = 1.0 and 1.4). J Alloys Compd 196:127CrossRef
14.
Zurück zum Zitat Batalovic K, Koteski V, Stojic D (2013) Hydrogen storage in martensite Ti-Zr-Ni alloy: a density functional theory study. J Phys Chem 117:26914 Batalovic K, Koteski V, Stojic D (2013) Hydrogen storage in martensite Ti-Zr-Ni alloy: a density functional theory study. J Phys Chem 117:26914
15.
Zurück zum Zitat Moitra A, Solani KN, Horstemeyer MF (2011) The location of atomic hydrogen in NiTi alloy: a first principles study. Comput Mater Sci 50:820CrossRef Moitra A, Solani KN, Horstemeyer MF (2011) The location of atomic hydrogen in NiTi alloy: a first principles study. Comput Mater Sci 50:820CrossRef
16.
Zurück zum Zitat Buchner H, Gutjahr MA, Beccu KD, Säufferer H (1972) Wasserstoff in Intermetallischen Phasen am Beispiel des Systems Titan-Nickel Wasserstoff. Z Metallkunde 63:497 Buchner H, Gutjahr MA, Beccu KD, Säufferer H (1972) Wasserstoff in Intermetallischen Phasen am Beispiel des Systems Titan-Nickel Wasserstoff. Z Metallkunde 63:497
17.
Zurück zum Zitat Yokoyama K, Hashimoto T, Sakai J (2017) First interactions between hydrogen and stress-induced reverse transformation of Ni-Ti superelastic alloy. Philos Mag Lett 97(11):459CrossRef Yokoyama K, Hashimoto T, Sakai J (2017) First interactions between hydrogen and stress-induced reverse transformation of Ni-Ti superelastic alloy. Philos Mag Lett 97(11):459CrossRef
18.
Zurück zum Zitat Pelton AR, Trepanier C, Gong XY, Wick A, Chen KC (2004) Structural and diffusional effects of hydrogen in TiNi. In: Pelton AR, Duerig TW (eds) Proceedings of SMST-2003. SMST, Menlo Park, CA, p 33 Pelton AR, Trepanier C, Gong XY, Wick A, Chen KC (2004) Structural and diffusional effects of hydrogen in TiNi. In: Pelton AR, Duerig TW (eds) Proceedings of SMST-2003. SMST, Menlo Park, CA, p 33
19.
Zurück zum Zitat Yokoyama K, Nagaoka A, Sakai J (2012) Effects of the hydrogen absorption conditions on the hydrogen embrittlement behavior of Ni–Ti superelastic alloy. ISIJ Int 52(2):255CrossRef Yokoyama K, Nagaoka A, Sakai J (2012) Effects of the hydrogen absorption conditions on the hydrogen embrittlement behavior of Ni–Ti superelastic alloy. ISIJ Int 52(2):255CrossRef
20.
Zurück zum Zitat Snir Y, Carl M, Ley NA, Young ML (2017) Effects of hydrogen charging on the phase transformation of martensitic NiTi shape memory alloy wires. Shape Mem Superelast 3:443CrossRef Snir Y, Carl M, Ley NA, Young ML (2017) Effects of hydrogen charging on the phase transformation of martensitic NiTi shape memory alloy wires. Shape Mem Superelast 3:443CrossRef
21.
Zurück zum Zitat Ota A, Yazaki Y, Yokoyama K, Sakai J (2009) Hydrogen absorption and thermal desorption behavior of Ni-Ti superelastic alloy immersed in neutral NaCl and NaF solutions under applied potential. Mater Trans 50(7):1843CrossRef Ota A, Yazaki Y, Yokoyama K, Sakai J (2009) Hydrogen absorption and thermal desorption behavior of Ni-Ti superelastic alloy immersed in neutral NaCl and NaF solutions under applied potential. Mater Trans 50(7):1843CrossRef
22.
Zurück zum Zitat Ogawa T, Yokozawa E, Oda T, Maruoka K, Sakai J (2015) Hydrogen embrittlement behavior of Ni-Ti shape memory alloy with different microstructures in acidic fluoride solution. Int J Mech Mater Eng 10:12CrossRef Ogawa T, Yokozawa E, Oda T, Maruoka K, Sakai J (2015) Hydrogen embrittlement behavior of Ni-Ti shape memory alloy with different microstructures in acidic fluoride solution. Int J Mech Mater Eng 10:12CrossRef
23.
Zurück zum Zitat Tomita M, Yokoyama K, Asaoka K, Sakai J (2008) Hydrogen thermal desorption behavior of Ni-Ti superelastic alloy subjected to tensile deformation after hydrogen charging. Mater Sci Eng A 476:308CrossRef Tomita M, Yokoyama K, Asaoka K, Sakai J (2008) Hydrogen thermal desorption behavior of Ni-Ti superelastic alloy subjected to tensile deformation after hydrogen charging. Mater Sci Eng A 476:308CrossRef
24.
Zurück zum Zitat Horikawa K, Kawabata Y, Kobayashi H (2008) Spontaneous bending of Ni-Ti alloy plates caused by preferential hydrogen absorption. Mater Trans 49(10):2233CrossRef Horikawa K, Kawabata Y, Kobayashi H (2008) Spontaneous bending of Ni-Ti alloy plates caused by preferential hydrogen absorption. Mater Trans 49(10):2233CrossRef
25.
Zurück zum Zitat Runciman A, Chen KC, Pelton AR, Trépanier C (2008) Effects of hydrogen on the phases and transition temperatures of NiTi. In: Berg B et al (ed) Proceedings of the international conference on shape memory and superelastic technologies. ASM International, p. 185 Runciman A, Chen KC, Pelton AR, Trépanier C (2008) Effects of hydrogen on the phases and transition temperatures of NiTi. In: Berg B et al (ed) Proceedings of the international conference on shape memory and superelastic technologies. ASM International, p. 185
26.
Zurück zum Zitat Pelton BL, Slater T, Pelton AR (1997) Effects of hydrogen in TiNi. In: Pelton AR et al (eds) Proceeding of SMST-1997. SMST, Santa Clara, p 395 Pelton BL, Slater T, Pelton AR (1997) Effects of hydrogen in TiNi. In: Pelton AR et al (eds) Proceeding of SMST-1997. SMST, Santa Clara, p 395
27.
Zurück zum Zitat Yokoyama K, Hamada K, Asaoka K (2001) Fracture analysis of hydrogen-charged nickel-titanium superelastic alloy. Mater Trans 42(1):141CrossRef Yokoyama K, Hamada K, Asaoka K (2001) Fracture analysis of hydrogen-charged nickel-titanium superelastic alloy. Mater Trans 42(1):141CrossRef
28.
Zurück zum Zitat Yokoyama K, Tomita M, Sakai J (2009) Hydrogen embrittlement behavior induced by dynamic martensite transformation of Ni-Ti superelastic alloy. Acta Mater 57:1875CrossRef Yokoyama K, Tomita M, Sakai J (2009) Hydrogen embrittlement behavior induced by dynamic martensite transformation of Ni-Ti superelastic alloy. Acta Mater 57:1875CrossRef
29.
Zurück zum Zitat Yokoyama K, Ogawa T, Takashima K, Asaoka K, Sakai J (2007) Hydrogen embrittlement of Ni–Ti superelastic alloy aged at room temperature after hydrogen charging. Mater Sci Eng, A 466:106–113CrossRef Yokoyama K, Ogawa T, Takashima K, Asaoka K, Sakai J (2007) Hydrogen embrittlement of Ni–Ti superelastic alloy aged at room temperature after hydrogen charging. Mater Sci Eng, A 466:106–113CrossRef
30.
Zurück zum Zitat ASTM F2063-12. Standard specification for wrought nickel-titanium shape memory alloys for medical devices and surgical implants ASTM F2063-12. Standard specification for wrought nickel-titanium shape memory alloys for medical devices and surgical implants
31.
Zurück zum Zitat Yokoyama K, Kaneko K, Yabuta A, Asaoka K, Sakai J (2004) Fracture of nickel-titanium superelastic alloy in sodium hypochlorite solution. Mater Sci Eng A 369:43CrossRef Yokoyama K, Kaneko K, Yabuta A, Asaoka K, Sakai J (2004) Fracture of nickel-titanium superelastic alloy in sodium hypochlorite solution. Mater Sci Eng A 369:43CrossRef
Metadaten
Titel
A Practitioner’s Perspective of Hydrogen in Ni-Ti Alloys
verfasst von
Tom Duerig
Oren Shelley
Daniel Madamba
Lot Vien
Publikationsdatum
23.07.2019
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 3/2019
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-019-00225-6

Weitere Artikel der Ausgabe 3/2019

Shape Memory and Superelasticity 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.