Skip to main content
Erschienen in: Cognitive Computation 2/2018

04.10.2017

A Primal Neural Network for Online Equality-Constrained Quadratic Programming

Erschienen in: Cognitive Computation | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper aims at solving online equality-constrained quadratic programming problem, which is widely encountered in science and engineering, e.g., computer vision and pattern recognition, digital signal processing, and robotics. Recurrent neural networks such as conventional GradientNet and ZhangNet are considered as powerful solvers for such a problem in light of its high computational efficiency and capability of circuit realisation. In this paper, an improved primal recurrent neural network and its electronic implementation are proposed and analysed. Compared to the existing recurrent networks, i.e. GradientNet and ZhangNet, our network can theoretically guarantee superior global exponential convergence. Robustness performance of our such neural model is also analysed under a large model implementation error, with the upper bound of stead-state solution error estimated. Simulation results demonstrate theoretical analysis on the proposed model, which also verify the effectiveness of the proposed model for online equality-constrained quadratic programming.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen K, Jia K, Zhang Z, Kämäräinen JK. Spectral attribute learning for visual regression. Pattern Recogn. 2017; (66):74–81. in press. Chen K, Jia K, Zhang Z, Kämäräinen JK. Spectral attribute learning for visual regression. Pattern Recogn. 2017; (66):74–81. in press.
2.
Zurück zum Zitat Chen K, Loy CC, Gong S, Xiang T. Feature mining for localised crowd counting. British Machine Vision Conference; 2012. p. 21.1–21.11. Chen K, Loy CC, Gong S, Xiang T. Feature mining for localised crowd counting. British Machine Vision Conference; 2012. p. 21.1–21.11.
3.
Zurück zum Zitat Chen K, Gong S, Xiang T, Loy CC. Cumulative attribute space for age and crowd density estimation. IEEE Conference on Computer Vision and Pattern Recognition; 2013. p. 2467–2474. Chen K, Gong S, Xiang T, Loy CC. Cumulative attribute space for age and crowd density estimation. IEEE Conference on Computer Vision and Pattern Recognition; 2013. p. 2467–2474.
4.
Zurück zum Zitat Chen K, Tuhtan JA, Fuentes-Pérez JF, Toming G, Musall M, Strokina N, Kämäräinen JK, Kruusmaa M. Estimation of flow turbulence metrics with a lateral line probe and regression. IEEE Trans Instrum Meas 2017;66(4):651–60.CrossRef Chen K, Tuhtan JA, Fuentes-Pérez JF, Toming G, Musall M, Strokina N, Kämäräinen JK, Kruusmaa M. Estimation of flow turbulence metrics with a lateral line probe and regression. IEEE Trans Instrum Meas 2017;66(4):651–60.CrossRef
5.
Zurück zum Zitat Leithead W, Zhang Y. O(N 2)-operation approximation of covariance matrix inverse in Gaussian process regression based on quasi-Newton BFGS method. Commun Stat-Simul Comput 2007;36(2):367–80.CrossRef Leithead W, Zhang Y. O(N 2)-operation approximation of covariance matrix inverse in Gaussian process regression based on quasi-Newton BFGS method. Commun Stat-Simul Comput 2007;36(2):367–80.CrossRef
6.
Zurück zum Zitat Chen K, Zhang L, Zhang Y. Cyclic motion generation of multi-link planar robot performing square end-effector trajectory analyzed via gradient-descent and Zhang et al’s neural-dynamic methods. International Symposium on Systems and Control in Aerospace and Astronautics; 2008. p. 1–6. Chen K, Zhang L, Zhang Y. Cyclic motion generation of multi-link planar robot performing square end-effector trajectory analyzed via gradient-descent and Zhang et al’s neural-dynamic methods. International Symposium on Systems and Control in Aerospace and Astronautics; 2008. p. 1–6.
7.
Zurück zum Zitat Wang J, Zhang Y. Recurrent neural networks for real-time computation of inverse kinematics of redundant manipulators. Machine Intelligence: Quo Vadis. 2004;299–319. Wang J, Zhang Y. Recurrent neural networks for real-time computation of inverse kinematics of redundant manipulators. Machine Intelligence: Quo Vadis. 2004;299–319.
8.
Zurück zum Zitat Zhang Y. A set of nonlinear equations and inequalities arising in robotics and its online solution via a primal neural network. Neurocomputing 2006;70(1):513–24.CrossRef Zhang Y. A set of nonlinear equations and inequalities arising in robotics and its online solution via a primal neural network. Neurocomputing 2006;70(1):513–24.CrossRef
9.
Zurück zum Zitat Zhang Y, Li K. Bi-criteria velocity minimization of robot manipulators using LVI-based primal-dual neural network and illustrated via PUMA560 robot arm. Robotica 2010;28(4):525–37.CrossRef Zhang Y, Li K. Bi-criteria velocity minimization of robot manipulators using LVI-based primal-dual neural network and illustrated via PUMA560 robot arm. Robotica 2010;28(4):525–37.CrossRef
10.
Zurück zum Zitat Zhang Y, Ma W, Li XD, Tan HZ, Chen K. Matlab simulink modeling and simulation of LVI-based primal–dual neural network for solving linear and quadratic programs. Neurocomputing 2009;72(7):1679–87.CrossRef Zhang Y, Ma W, Li XD, Tan HZ, Chen K. Matlab simulink modeling and simulation of LVI-based primal–dual neural network for solving linear and quadratic programs. Neurocomputing 2009;72(7):1679–87.CrossRef
11.
Zurück zum Zitat Suykens J, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett 1999;9(3): 293–300.CrossRef Suykens J, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett 1999;9(3): 293–300.CrossRef
12.
Zurück zum Zitat Suykens J, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J, Suykens J, Van Gestel T. 2002. Least squares support vector machines. vol 4 World Scientific. Suykens J, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J, Suykens J, Van Gestel T. 2002. Least squares support vector machines. vol 4 World Scientific.
13.
Zurück zum Zitat Wang Z, Chen S. New least squares support vector machines based on matrix patterns. Neural Process Lett 2007;26(1):41–56.CrossRef Wang Z, Chen S. New least squares support vector machines based on matrix patterns. Neural Process Lett 2007;26(1):41–56.CrossRef
14.
Zurück zum Zitat Chapelle O. Training a support vector machine in the primal. Neural Comput 2007;19(5):1155–78.CrossRefPubMed Chapelle O. Training a support vector machine in the primal. Neural Comput 2007;19(5):1155–78.CrossRefPubMed
15.
Zurück zum Zitat Zhang Y, Leithead WE, Leith DJ. Time-series Gaussian process regression based on Toeplitz computation of O(N 2) operations and O(N)-level storage. IEEE Conference on Decision and Control; 2005. p. 3711–3716. Zhang Y, Leithead WE, Leith DJ. Time-series Gaussian process regression based on Toeplitz computation of O(N 2) operations and O(N)-level storage. IEEE Conference on Decision and Control; 2005. p. 3711–3716.
16.
Zurück zum Zitat Hopfield JJ, Tank DW. Neural computation of decisions in optimization problems. Biol Cybern 1985;52(3): 141–52.PubMed Hopfield JJ, Tank DW. Neural computation of decisions in optimization problems. Biol Cybern 1985;52(3): 141–52.PubMed
17.
Zurück zum Zitat Wang J. Recurrent neural network for solving quadratic programming problems with equality constraints. Electron Lett 1992;28(14):1345–7.CrossRef Wang J. Recurrent neural network for solving quadratic programming problems with equality constraints. Electron Lett 1992;28(14):1345–7.CrossRef
18.
Zurück zum Zitat Zhang Y. Towards piecewise-linear primal neural networks for optimization and redundant robotics. IEEE International Conference on Networking, Sensing and Control; 2006. p. 374–379. Zhang Y. Towards piecewise-linear primal neural networks for optimization and redundant robotics. IEEE International Conference on Networking, Sensing and Control; 2006. p. 374–379.
19.
Zurück zum Zitat Zhang Y, Li Z. Zhang neural network for online solution of time-varying convex quadratic program subject to time-varying linear-equality constraints. Phys Lett A 2009;373(18):1639–43.CrossRef Zhang Y, Li Z. Zhang neural network for online solution of time-varying convex quadratic program subject to time-varying linear-equality constraints. Phys Lett A 2009;373(18):1639–43.CrossRef
20.
Zurück zum Zitat Zhang Y, Yang Y, Ruan G. Performance analysis of gradient neural network exploited for online time-varying quadratic minimization and equality-constrained quadratic programming. Neurocomputing 2011;74(10): 1710–9.CrossRef Zhang Y, Yang Y, Ruan G. Performance analysis of gradient neural network exploited for online time-varying quadratic minimization and equality-constrained quadratic programming. Neurocomputing 2011;74(10): 1710–9.CrossRef
21.
Zurück zum Zitat Chen K. Recurrent implicit dynamics for online matrix inversion. Appl Math Comput 2013;219(20):10218–24. Chen K. Recurrent implicit dynamics for online matrix inversion. Appl Math Comput 2013;219(20):10218–24.
22.
Zurück zum Zitat Chen K, Yi C. Robustness analysis of a hybrid of recursive neural dynamics for online matrix inversion. Appl Math Comput 2016;273:969–75. Chen K, Yi C. Robustness analysis of a hybrid of recursive neural dynamics for online matrix inversion. Appl Math Comput 2016;273:969–75.
23.
Zurück zum Zitat Chen K. Improved neural dynamics for online sylvester equations solving. Inf Process Lett 2016;116(7):455–9.CrossRef Chen K. Improved neural dynamics for online sylvester equations solving. Inf Process Lett 2016;116(7):455–9.CrossRef
24.
Zurück zum Zitat Chen K. Robustness analysis of Wang neural network for online linear equation solving. Electron Lett 2012;48 (22):1391– 2.CrossRef Chen K. Robustness analysis of Wang neural network for online linear equation solving. Electron Lett 2012;48 (22):1391– 2.CrossRef
25.
Zurück zum Zitat Chen K. Implicit dynamic system for online simultaneous linear equations solving. Electron Lett 2013;49(2): 101–2.CrossRef Chen K. Implicit dynamic system for online simultaneous linear equations solving. Electron Lett 2013;49(2): 101–2.CrossRef
26.
Zurück zum Zitat Zhang Y, Chen K, Tan HZ. Performance analysis of gradient neural network exploited for online time-varying matrix inversion. IEEE Trans Autom Control 2009;54(8):1940–5.CrossRef Zhang Y, Chen K, Tan HZ. Performance analysis of gradient neural network exploited for online time-varying matrix inversion. IEEE Trans Autom Control 2009;54(8):1940–5.CrossRef
27.
Zurück zum Zitat Zhang Y, Li S, Zhang X. Simulink comparison of varying-parameter convergent-differential neural-network and gradient neural network for solving online linear time-varying equations. World Congress on Intelligent Control and Automation; 2016. p. 887–894. Zhang Y, Li S, Zhang X. Simulink comparison of varying-parameter convergent-differential neural-network and gradient neural network for solving online linear time-varying equations. World Congress on Intelligent Control and Automation; 2016. p. 887–894.
28.
Zurück zum Zitat Zhang Z, Chen S, Zheng L, Zhang J. Matlab Simulink of varying-parameter convergent-differential neural-network for solving online time-varying matrix inverse. International Symposium on Computational Intelligence and Design; 2016. p. 320–325. Zhang Z, Chen S, Zheng L, Zhang J. Matlab Simulink of varying-parameter convergent-differential neural-network for solving online time-varying matrix inverse. International Symposium on Computational Intelligence and Design; 2016. p. 320–325.
29.
Zurück zum Zitat Chen K, Guo D, Tan Z, Yang Z, Zhang Y. Cyclic motion planning of redundant robot arms: simple extension of performance index may not work. International Symposium on Intelligent Information Technology Application; 2008. p. 635– 639. Chen K, Guo D, Tan Z, Yang Z, Zhang Y. Cyclic motion planning of redundant robot arms: simple extension of performance index may not work. International Symposium on Intelligent Information Technology Application; 2008. p. 635– 639.
30.
Zurück zum Zitat Mead C, Ismail M. 1989. Analog VLSI implementation of neural systems. Springer Science & Business Media. Mead C, Ismail M. 1989. Analog VLSI implementation of neural systems. Springer Science & Business Media.
31.
Zurück zum Zitat Zhang Z, Li Z, Zhang Y, Luo Y, Li Y. Neural-dynamic-method-based dual-arm CMG scheme with time-varying constraints applied to humanoid robots. IEEE Trans Neural Netw Learn Syst 2015;26(12):3251–62.CrossRefPubMed Zhang Z, Li Z, Zhang Y, Luo Y, Li Y. Neural-dynamic-method-based dual-arm CMG scheme with time-varying constraints applied to humanoid robots. IEEE Trans Neural Netw Learn Syst 2015;26(12):3251–62.CrossRefPubMed
32.
Zurück zum Zitat Zhang Z, Zhang Y. Equivalence of different-level schemes for repetitive motion planning of redundant robots. Acta Automatica Sinica 2013;39(1):88–91.CrossRef Zhang Z, Zhang Y. Equivalence of different-level schemes for repetitive motion planning of redundant robots. Acta Automatica Sinica 2013;39(1):88–91.CrossRef
33.
Zurück zum Zitat Zhang Y, Yang Y, Ruan G. Performance analysis of gradient neural network exploited for online time-varying quadratic minimization and equality-constrained quadratic programming. Neurocomputing 2011;74(10): 1710–9.CrossRef Zhang Y, Yang Y, Ruan G. Performance analysis of gradient neural network exploited for online time-varying quadratic minimization and equality-constrained quadratic programming. Neurocomputing 2011;74(10): 1710–9.CrossRef
34.
Zurück zum Zitat Zhang Y, Ge SS. Design and analysis of a general recurrent neural network model for time-varying matrix inversion. IEEE Trans Neural Netw 2005;16(6):1477–90.CrossRefPubMed Zhang Y, Ge SS. Design and analysis of a general recurrent neural network model for time-varying matrix inversion. IEEE Trans Neural Netw 2005;16(6):1477–90.CrossRefPubMed
35.
Zurück zum Zitat Chen K, Zhang Z. An Improved Recurrent Network for Online Equality-Constrained Quadratic Programming. Advances in Brain Inspired Cognitive Systems; 2016. p. 1–10. Chen K, Zhang Z. An Improved Recurrent Network for Online Equality-Constrained Quadratic Programming. Advances in Brain Inspired Cognitive Systems; 2016. p. 1–10.
Metadaten
Titel
A Primal Neural Network for Online Equality-Constrained Quadratic Programming
Publikationsdatum
04.10.2017
Erschienen in
Cognitive Computation / Ausgabe 2/2018
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-017-9510-4

Weitere Artikel der Ausgabe 2/2018

Cognitive Computation 2/2018 Zur Ausgabe

Premium Partner