Skip to main content
Erschienen in: Journal of Scientific Computing 3/2015

01.06.2015

A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction–Diffusion Equations on Surfaces

verfasst von: Varun Shankar, Grady B. Wright, Robert M. Kirby, Aaron L. Fogelson

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we present a method based on radial basis function (RBF)-generated finite differences (FD) for numerically solving diffusion and reaction–diffusion equations (PDEs) on closed surfaces embedded in \({\mathbb {R}}^d\). Our method uses a method-of-lines formulation, in which surface derivatives that appear in the PDEs are approximated locally using RBF interpolation. The method requires only scattered nodes representing the surface and normal vectors at those scattered nodes. All computations use only extrinsic coordinates, thereby avoiding coordinate distortions and singularities. We also present an optimization procedure that allows for the stabilization of the discrete differential operators generated by our RBF-FD method by selecting shape parameters for each stencil that correspond to a global target condition number. We show the convergence of our method on two surfaces for different stencil sizes, and present applications to nonlinear PDEs simulated both on implicit/parametric surfaces and more general surfaces represented by point clouds.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Bayona, V., Moscoso, M., Carretero, M., Kindelan, M.: Rbf-fd formulas and convergence properties. J. Comput. Phys. 229(22), 8281–8295 (2010)CrossRefMATH Bayona, V., Moscoso, M., Carretero, M., Kindelan, M.: Rbf-fd formulas and convergence properties. J. Comput. Phys. 229(22), 8281–8295 (2010)CrossRefMATH
4.
Zurück zum Zitat Cecil, T., Qian, J., Osher, S.: Numerical methods for high dimensional Hamilton–Jacobi equations using radial basis functions. J. Comput. Phys. 196, 327–347 (2004)CrossRefMATHMathSciNet Cecil, T., Qian, J., Osher, S.: Numerical methods for high dimensional Hamilton–Jacobi equations using radial basis functions. J. Comput. Phys. 196, 327–347 (2004)CrossRefMATHMathSciNet
5.
Zurück zum Zitat Chandhini, G., Sanyasiraju, Y.: Local RBF-FD solutions for steady convection–diffusion problems. Int. J. Numer. Methods Eng. 72(3), 352–378 (2007)CrossRefMATHMathSciNet Chandhini, G., Sanyasiraju, Y.: Local RBF-FD solutions for steady convection–diffusion problems. Int. J. Numer. Methods Eng. 72(3), 352–378 (2007)CrossRefMATHMathSciNet
7.
Zurück zum Zitat Davydov, O., Oanh, D.: Adaptive meshless centres and rbf stencils for poisson equation. J. Comput. Phys. 230(2), 287–304 (2011)CrossRefMATHMathSciNet Davydov, O., Oanh, D.: Adaptive meshless centres and rbf stencils for poisson equation. J. Comput. Phys. 230(2), 287–304 (2011)CrossRefMATHMathSciNet
8.
Zurück zum Zitat Driscoll, T., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl. 43(3), 413–422 (2002)CrossRefMATHMathSciNet Driscoll, T., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl. 43(3), 413–422 (2002)CrossRefMATHMathSciNet
10.
Zurück zum Zitat Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. Interdisciplinary Mathematical Sciences, vol. 6. Scientific Publishers, Singapore (2007)CrossRef Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. Interdisciplinary Mathematical Sciences, vol. 6. Scientific Publishers, Singapore (2007)CrossRef
11.
Zurück zum Zitat Fasshauer, G.E., McCourt, M.J.: Stable evaluation of Gaussian radial basis function interpolants. SIAM J. Sci. Comput. 34, A737–A762 (2012)CrossRefMATHMathSciNet Fasshauer, G.E., McCourt, M.J.: Stable evaluation of Gaussian radial basis function interpolants. SIAM J. Sci. Comput. 34, A737–A762 (2012)CrossRefMATHMathSciNet
12.
Zurück zum Zitat Flyer, N., Lehto, E., Blaise, S., Wright, G., St-Cyr, A.: A guide to RBF-generated finite differences for nonlinear transport: shallow water simulations on a sphere. J. Comput. Phys. 231, 4078–4095 (2012)CrossRefMATHMathSciNet Flyer, N., Lehto, E., Blaise, S., Wright, G., St-Cyr, A.: A guide to RBF-generated finite differences for nonlinear transport: shallow water simulations on a sphere. J. Comput. Phys. 231, 4078–4095 (2012)CrossRefMATHMathSciNet
13.
Zurück zum Zitat Flyer, N., Wright, G.B.: Transport schemes on a sphere using radial basis functions. J. Comput. Phys. 226, 1059–1084 (2007)CrossRefMATHMathSciNet Flyer, N., Wright, G.B.: Transport schemes on a sphere using radial basis functions. J. Comput. Phys. 226, 1059–1084 (2007)CrossRefMATHMathSciNet
14.
Zurück zum Zitat Flyer, N., Wright, G.B.: A radial basis function method for the shallow water equations on a sphere. Proc. Roy. Soc. A 465, 1949–1976 (2009)CrossRefMATHMathSciNet Flyer, N., Wright, G.B.: A radial basis function method for the shallow water equations on a sphere. Proc. Roy. Soc. A 465, 1949–1976 (2009)CrossRefMATHMathSciNet
15.
Zurück zum Zitat Fornberg, B., Driscoll, T.A., Wright, G., Charles, R.: Observations on the behavior of radial basis functions near boundaries. Comput. Math. Appl. 43, 473–490 (2002)CrossRefMATHMathSciNet Fornberg, B., Driscoll, T.A., Wright, G., Charles, R.: Observations on the behavior of radial basis functions near boundaries. Comput. Math. Appl. 43, 473–490 (2002)CrossRefMATHMathSciNet
16.
Zurück zum Zitat Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011)CrossRefMATHMathSciNet Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011)CrossRefMATHMathSciNet
17.
Zurück zum Zitat Fornberg, B., Lehto, E.: Stabilization of RBF-generated finite difference methods for convective PDEs. J. Comput. Phys. 230, 2270–2285 (2011)CrossRefMATHMathSciNet Fornberg, B., Lehto, E.: Stabilization of RBF-generated finite difference methods for convective PDEs. J. Comput. Phys. 230, 2270–2285 (2011)CrossRefMATHMathSciNet
18.
Zurück zum Zitat Fornberg, B., Lehto, E., Powell, C.: Stable calculation of Gaussian-based RBF-FD stencils. Comput. Math. Appl. 65, 627–637 (2013)CrossRefMathSciNet Fornberg, B., Lehto, E., Powell, C.: Stable calculation of Gaussian-based RBF-FD stencils. Comput. Math. Appl. 65, 627–637 (2013)CrossRefMathSciNet
19.
Zurück zum Zitat Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30, 60–80 (2007)CrossRefMATHMathSciNet Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30, 60–80 (2007)CrossRefMATHMathSciNet
20.
Zurück zum Zitat Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48, 853–867 (2004)CrossRefMATHMathSciNet Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48, 853–867 (2004)CrossRefMATHMathSciNet
21.
Zurück zum Zitat Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput. Math. Appl. 54, 379–398 (2007)CrossRefMATHMathSciNet Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput. Math. Appl. 54, 379–398 (2007)CrossRefMATHMathSciNet
23.
Zurück zum Zitat Fuselier, E.J., Wright, G.B.: A high-order kernel method for diffusion and reaction-diffusion equations on surfaces. J. Sci. Comput. 1–31 (2013). doi:10.1007/s10915-013-9688-x Fuselier, E.J., Wright, G.B.: A high-order kernel method for diffusion and reaction-diffusion equations on surfaces. J. Sci. Comput. 1–31 (2013). doi:10.​1007/​s10915-013-9688-x
24.
Zurück zum Zitat George, A., Liu, J.W.: Computer Solution of Large Sparse Positive Definite. Prentice Hall Professional Technical Reference (1981) George, A., Liu, J.W.: Computer Solution of Large Sparse Positive Definite. Prentice Hall Professional Technical Reference (1981)
25.
Zurück zum Zitat Gia, Q.T.L.: Approximation of parabolic pdes on spheres using spherical basis functions. Adv. Comput. Math. 22, 377–397 (2005)CrossRefMATHMathSciNet Gia, Q.T.L.: Approximation of parabolic pdes on spheres using spherical basis functions. Adv. Comput. Math. 22, 377–397 (2005)CrossRefMATHMathSciNet
27.
Zurück zum Zitat Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Comput. Math. Appl. 49, 103–130 (2005)CrossRefMATHMathSciNet Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Comput. Math. Appl. 49, 103–130 (2005)CrossRefMATHMathSciNet
28.
Zurück zum Zitat Larsson, E., Lehto, E., Heryudono, A., Fornberg, B.: Stable computation of differentiation matrices and scattered node stencils based on gaussian radial basis functions. SIAM J. Sci. Comput. 35(4), A2096–A2119 (2013). doi:10.1137/120899108 CrossRefMATHMathSciNet Larsson, E., Lehto, E., Heryudono, A., Fornberg, B.: Stable computation of differentiation matrices and scattered node stencils based on gaussian radial basis functions. SIAM J. Sci. Comput. 35(4), A2096–A2119 (2013). doi:10.​1137/​120899108 CrossRefMATHMathSciNet
30.
Zurück zum Zitat Piret, C.: The orthogonal gradients method: a radial basis functions method for solving partial differential equations on arbitrary surfaces. J. Comput. Phys. 231(20), 4662–4675 (2012)CrossRefMATHMathSciNet Piret, C.: The orthogonal gradients method: a radial basis functions method for solving partial differential equations on arbitrary surfaces. J. Comput. Phys. 231(20), 4662–4675 (2012)CrossRefMATHMathSciNet
31.
33.
Zurück zum Zitat Shankar, V., Wright, G.B., Fogelson, A.L., Kirby, R.M.: A radial basis function (rbf) finite difference method for the simulation of reactiondiffusion equations on stationary platelets within the augmented forcing method. Int. J. Numer. Methods Fluids (2014). doi:10.1002/fld.3880 Shankar, V., Wright, G.B., Fogelson, A.L., Kirby, R.M.: A radial basis function (rbf) finite difference method for the simulation of reactiondiffusion equations on stationary platelets within the augmented forcing method. Int. J. Numer. Methods Fluids (2014). doi:10.​1002/​fld.​3880
34.
Zurück zum Zitat Shu, C., Ding, H., Yeo, K.: Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 192(7), 941–954 (2003)CrossRefMATH Shu, C., Ding, H., Yeo, K.: Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 192(7), 941–954 (2003)CrossRefMATH
35.
Zurück zum Zitat Stevens, D., Power, H., Lees, M., Morvan, H.: The use of PDE centers in the local RBF Hermitean method for 3D convective–diffusion problems. J. Comput. Phys. 228, 4606–4624 (2009)CrossRefMATHMathSciNet Stevens, D., Power, H., Lees, M., Morvan, H.: The use of PDE centers in the local RBF Hermitean method for 3D convective–diffusion problems. J. Comput. Phys. 228, 4606–4624 (2009)CrossRefMATHMathSciNet
36.
Zurück zum Zitat Tolstykh, A., Shirobokov, D.: On using radial basis functions in a finite difference mode with applications to elasticity problems. Comput. Mech. 33(1), 68–79 (2003)CrossRefMATHMathSciNet Tolstykh, A., Shirobokov, D.: On using radial basis functions in a finite difference mode with applications to elasticity problems. Comput. Mech. 33(1), 68–79 (2003)CrossRefMATHMathSciNet
37.
Zurück zum Zitat Varea, C., Aragon, J., Barrio, R.: Turing patterns on a sphere. Phys. Rev. E 60, 4588–4592 (1999)CrossRef Varea, C., Aragon, J., Barrio, R.: Turing patterns on a sphere. Phys. Rev. E 60, 4588–4592 (1999)CrossRef
38.
Zurück zum Zitat Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005) Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)
Metadaten
Titel
A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction–Diffusion Equations on Surfaces
verfasst von
Varun Shankar
Grady B. Wright
Robert M. Kirby
Aaron L. Fogelson
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2015
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-014-9914-1

Weitere Artikel der Ausgabe 3/2015

Journal of Scientific Computing 3/2015 Zur Ausgabe